In this research, a simple experiment in the field of agriculture was studied, in terms of the effect of out-of-control noise as a result of several reasons, including the effect of environmental conditions on the observations of agricultural experiments, through the use of Discrete Wavelet transformation, specifically (The Coiflets transform of wavelength 1 to 2 and the Daubechies transform of wavelength 2 To 3) based on two levels of transform (J-4) and (J-5), and applying the hard threshold rules, soft and non-negative, and comparing the wavelet transformation methods using real data for an experiment with a size of 26 observations. The application was carried out through a program in the language of MATLAB. The researcher concluded that using the wavelet transform with the Suggested threshold reduced the noise of observations through the comparison criteria.
A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreMethods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The aim of this research is to show the importance of the effective use
of the internet in academic libraries; to improve the services and to increase
the competence of librarians.
The research has given some recommendations to improve the quality
of services and the need for cooperative network among academic libraries.
Dynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreGraphene oxide (GO) was prepared from graphite (GT) with Hammer method, the GO was reduced with hydrazine hydrate to produce a reduced graphene oxide (RGO). The RGO was reacted with thiocarbohydrazide (TCH) to functionalize the RGO with 4-amino-3-symbol-1h-1, 2, 4-triazol-5 (4H) –thion group and to obtain (RGOT). All the prepared nanomaterial and the product of the functionalization RGOT were characterized with Fourier transformer infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis. RGOT mixed with ultrasonic device at different pH values of phosphate buffer solution (PBS), the mixture used to modifying a screen printed carbon electrodes SPCE and with cyclic voltammetry the sensitivity of selectivity of the new modifying elect
... Show More