In this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
Azo dye ligand was produced by coupling the diazonium salt of 4aminoantipyrine with 2, 4-dimethylphenol. The structure of 1 azo compound was someone by elemental analyses, HNMR, FT-IR and UV-Vis spectroscopic mechanics. Metal complexes of nickel (II) and copper (II) have been performed and depicted. The formation of complexes has been identified by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectral process as well as, conductivity and magnetic properties quantifications. The nature of the complexes formed were studied succeed the mole ratio and continuous variation methods, Beer's law followed over a concentration 4 4 scope (1×10- - 3×10- M). High molar absorbtivity of the complex solutions were observed. Analytica
... Show MoreIn this work lactone (1) was prepared from the reaction of p-nitro phenyl hydrazine with ethylacetoacetate, which upon treatment with benzoyl chloride afforded the lactame (2). The reaction of (2) with 2-amino phenol produced a new Schiff base (L) in good yield. Complexes of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) with the new Schiff base (L) have been prepared. The compounds (1, 2) were characterized by FT-IR and UV spectroscopy, as well as characterizing ligand (L) by the same techniques with elemental analysis (C.H.N) and (1H-NMR). The prepared complexes were identified and their structural geometries were suggested by using elemental analysis (C.H.N), flame atomic absorption technique, FT-IR and UV-Vis spectroscopy, in additio
... Show MoreIn this work, prepared new ligand namely 5-(2,4-dichloro-phenyl)-1,3,4-oxadiazole-2-(3H)-thion, was obtained from the 2,4-dichlorobenzoyl chloride with hydrazine, after that reaxtion with CS2/KOH in methanol.
A new metal complexes are made from the ligands derived from amoxicillin based Schiff's base coordinated with Pd(II) and Co(II) have been synthesized and characterized via different spectroscopic methods. FT-IR spectroscopy have shown a formation of tetrahedral and square planar geometry for Co(II) and Pd(II) complexes, respectively. Surface morphology was inspected via field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The Brunauer–Emmett–Teller surface area of the metal complexes samples is about 6.63 to 8.71 m2/g, with pore diameters and volume of 0.030–0.0501 cm3/g and 18.39–22.98 nm, respectively. The quadrupo
Transition metal complexes of Co(II) and Ni(II) with azo dye 3,5-dimethyl-2-(4-nitrophenylazo)-phenol derived from 4-nitoaniline and3,5-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis,electronic data, FT-IR,UV-Vis and 1 HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of thecomplexes formed were studies following the mole ratio and continuous variation methods, Beer ' s law obeyed over a concentrationrange (1x10 -4 - 3x10 -4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, thestoichiomerty of the complexes has been found to be 1:2 (Metal:ligand). On the basis of physicochemical data tetrahedral
... Show MoreHippuric acid and 3-amino phenol were used to make the 4-(2-Amino-4-hydroxy-phenylazo)-benzoylamino-acetic acid diazonium salt, a new Azo molecule that is a derivative of the (4-Amino-benzoylamino)-acetic acid diazonium salt. We found out what the ligand's chemical structures were by using information from 1HNMR, FTIR, CHN, UV-Vis, LC-mass spectroscopy, and thermal analyses. To make metal complexes of the azo ligand with Co(II), Cu(II), Ru(III), and Rh(III) ions, extra amounts of each azo ligand were mixed with metal chloride salts in a 2:2 mole ratio. The stereochemical structures and geometries of the metal complexes that were studied were guessed based on the fact that the ligand exhibited tetradentate bonding behavior when combined w
... Show MoreIn this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, w
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show More