This study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calculate the classification accuracy. Statistical analysis for the result of the classification of each scene is presented for each class .The study showed that the ICA transform makes the satellite image significantly increases the classification accuracy, as well as that the Gaussian kernel gives the highest classification accuracy than other kernels.
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreDouble hydrothermal method was used to prepare nano gamma alumina using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, CTAB (cetyltrimethylammonium bromide) as surfactant, and variable acids: weak acids like; citric, and acitic acids, and strong acids like; hydrochloric and nitric acids as a bridge between aluminum salts and surfactant. Different crystallization times 12, 24, 48, and 72 hrs were applied. All the batches were prepared at pH equals to 9. XRD diffraction technique was used to investigate the crystalline nano gamma alumina pure from surfactant. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the average p
... Show MoreThe work was carried out in two stages. The first stage concerned
with study of silicon carbide (SiC) ratio (1.5, 2.5, 3.5, and 4.5 wt%)
effect on the Thermal conductivity of polyvinyl chloride (PVC); and
the second stage concerned with the UV – weatherizing (25, 50, and
75 hr), thermal aging (40, 50, and 60 °C), and rain- weatherizing (1,
2.5, and 4 hr) effect on the samples involved. Thermal conductivity
results proved that there was slight increase in thermal conductivity
by (SiC) loading; it increased from 0.17 W/m.K for PVC to 0.19
W/m.K for 4.5% SiC/PVC; where as it was systematically decreased
by UV- weatherizing, thermal aging, and rain- weatherizing. This
property is in a good agreement with gene
The financial markets are one of the sectors whose data is characterized by continuous movement in most of the times and it is constantly changing, so it is difficult to predict its trends , and this leads to the need of methods , means and techniques for making decisions, and that pushes investors and analysts in the financial markets to use various and different methods in order to reach at predicting the movement of the direction of the financial markets. In order to reach the goal of making decisions in different investments, where the algorithm of the support vector machine and the CART regression tree algorithm are used to classify the stock data in order to determine
... Show More