This work includes the synthesis of some new five- seven heterocyclic rings derived from benzenesulfonylhydrazide as starting material. Its condensation with 4-methoxy and 4nitro benzaldehyde gives the Schiff bases (1a,b). Schiff bases were reacted with cyclic anhydrides given Oxazepine, Thiazepine derivatives(2,3,4 a,b)(seven membered ring) and with 2-mercapto benzoic acid gives thiazine derivatives (6a,b)(six membered ring) finally with thioglycolic acid give thiazolidine ring(five membered ring) scheme(3). The synthesized compounds have been characterized by melting points,FT-IR, 1H-NMR spectroscopy ,13CNMR and Elemental analysis. some of synthesized compounds were tested for their antibacterial activity
... Show MoreA series of new Bis-1,4-Butane -1,3,4 – Oxadizole derivatives [III a-j] were synthesized from adipic acid dihydrazide and different aromatic acids in the presence of phosphours oxychloide. There compounds were characterized by their IR, microanalysis, and mass spectral data. In vitro antimicrobial were synthesized. In vitro antimicrobial activity of these compounds against (Gram negative) and (Gram positive) were reported, some of these compounds prepared derivatives exhibited antimicrobial activity
Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-t
... Show MoreThe aim of this research is to employ starch as a stabilizing and reducing agent in the production of CdS nanoparticles with less environmental risk, easy scaling, stability, economical feasibility, and suitability for large-scale production. Nanoparticles of CdS have been successfully produced by employing starch as a reducing agent in a simple green synthesis technique and then doped with Sn in certain proportions (1%, 2%, 3%, 4%, and 5%).According to the XRD data, the samples were crystallized in a hexagonal pattern, because the average crystal size of pure CdS is 5.6nm and fluctuates in response to the changes in doping concentration 1, 2, 3, 4, 5 %wt Sn, to become 4.8, 3.9, 11.5, 13.1, 9.3 nm respectively. An increase in crystal
... Show More4,4'-(pyridine-2,6-diylbis(1,3,4-oxadiazole-5,2-diyl))bisphenol monomer (3)was synthesized from cyclization of N'2,N'6-bis(4-hydroxybenzylidene)pyridine-2,6-dicarbohydrazide (2)in the presence of bromine in glacialacetic acid. Newly five polymers (P1-P5) were synthesized from reaction bis-1,3,4-oxadiazole bisphenolmonomer with five different di acid chloride. The antibacterial activity of the synthesized polymers was screened against gram positive and gram negative bacteria. Polymers P4 and P5 exhibited significant antibacterial against all microorganisms, as well these polymers showed highest antifungal activity.
This research includes the synthesis of some new different heterocyclic derivatives of 5-Bromoisatin. New sulfonylamide, diazine, oxazole, thiazole and 1,2,3-triazole derivatives of 5-Bromoisatin have been synthesized. The synthesis process started by the reaction of 5-Bromoisatin with different reagents to obtain schiff bases of 5-Bromoisatin intermediate compounds(1, 8, 19) by using glacial acetic acid as a catalyst in three routes. The first route, 5-Bromoisatin reacted with p-aminosulfonylchloride to product compound(1), then converted to sulfonyl amide derivatives(2-7) by the reaction of compound(1) with different substituted primary aromatic amine in absolute ethanol. The second route includes the reaction of 5-Bromoisatin rea
... Show MoreThis research include synthesized and characterization the compound [I] by reaction terephthaldehyde , mercaptoacetic acid and thiosemicarbazide with concentrated sulfuric acid then this compound reaction with ethyl chloroacetate and sodium acetate to product ester compound [II],the latter compound reaction with hydrazine hydrate to synthesized acid hydrazide [III] after that reaction with 4-alkoxy benzaldehyde[IV]n to synthesized Schiff bases compounds [V]n, the compound [VI] synthesized via reaction compound [I] with chloroacetic acid and sodium acetate then the compound[VI] reaction with 2-phenylenediamine in 4 N hydrochloric acid to product benzimidazole compound[VII]. The compounds characterized by melting points, FTIR and 1HNMR spectr
... Show MoreTwo series of Schiff Bases and 2,3-disubstituted-1,3-thiazolidin-4-one derivatives were synthesized . Reaction of 2-mercaptobenzothiazole with α-chloro acetic acid gave compound[I]. Esterification of carboxylic moity of compound [I] , using absolute methanol in the presence of conc . H2SO4 yielded acorresebonding ester [II] , wich was condensation with hydrazine hydrate to give acid hydrazide [III] . The new Schiff bases [V]n were synthesized by reaction of acid hydrizide with dialdehyde [IV]n in the presence of glacial acetic acid . The thiazolidinone derivatives [VI]n have been obtained from the azomethines through the addition of thioglycolic acid . Their chemical structures have been confirmed by mel
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show More