In this study, the water treatment plants located on the Tigris River within Baghdad city were subjected to qualitative and quantitative assessments. Based on location, the plants from upstream to downstream are Al-Karkh, East Tigris, Al-Karamah, Al-Wathbah, Al-Wehdah, Al-Kadiseyah, Al-Dora, and Al-Rashid. Data from 2009 to 2020 on the turbidity, total dissolved solids, Alkalinity, hardness, chloride, calcium, and temperature were used in the qualitative assessment while data on the treated water production and population served were used in the quantitative assessment. The above Data was acquired from the Municipality of Baghdad. The turbidity was mainly used as a fair gauge to assess the performance of the water treatment plants in Baghdad since most of the treatment processes are focusing on turbidity removals. In addition, parameters other than turbidity were used in the assessment. Based on turbidity alone, the maximum treatment efficiency of the plants was found to be 99.34% while the minimum efficiency was 85.85%. The quantitative assessment showed that only three plants (Al-Karkh, Al-Kadiseyah, and Al-Dora) meet the population's required demand.
تسعى تركيا ضمن سياساتها المائية ومنذ زمن بعيد وبأصرار على تنفيذ المزيد من بناء السدود والمشاريع التخزينية المائية على حوضي دجلة والفرات، الامر الذي يؤدي بالضرورة الى تناقص معدل الواردات المائية لنهري دجلة والفرات الداخلة للاراضي العراقية .وبالتالي التأثير على مقومات التنمية الزراعية العربية بشكل عام والتنمية الزراعية بالعراق بشكل خاص ومن ثم تهديد الامن الغذائي الوطني.
لذا فأن البحث يهد
... Show MoreThe significant shortage of usable water resources necessitated the creation of safe and non-polluting ways to sterilize water and rehabilitate it for use. The aim of the present study was to examine the ability of using a gliding arc discharge to inactivate bacteria in water. Three types of Bacteria satisfactory were used to pollute water which are Escherichia coli (Gram-negative), Staphylococcus aurous (Gram-positive) and salmonella (Gram-negative). A DC power supply 12V at 100 Hz frequency was employed to produce plasma. pH of water is measured gradually during the plasma treatment process. Contaminated water treated by gliding arc discharge at steadying the gas flow rate (1.5 l/mi
This study was aimed to investigate the response of two types of ornamental herbaceous plants (Wedelia trilobata and Jacobaea maritima 'Cirrus') to different agricultural environments and the application of potassium silicates to the living walls system LWS (Felt layer system) under the climate conditions of Baghdad city. Each experiment involved the cultivation of a different plant species, and the study duration was from September 15, 2021, to August 1, 2022. A Strip-Plot Design experiment was conducted using two factors: factor M with four levels of substrates (50% peatmoss and perlite (M1), 50% Vermicompost and perlite (M2), 50% Water hyacinth compost and perlite (M3), 50% wheat straw compost and perlite (M4)) and factor S with
... Show MoreA water crisis is a circumstance in which a region accessible potable, unpolluted water is less than the requirement of that country. Two converging trends cause water scarcity, that are expanded use of irrigation, and loss of available freshwater supplies. Water scarcity can arise from two mechanisms, the physical water scarcity because of deficient natural water supply to fulfil the country demand, and economic water scarcity due to bad management for sufficient available water resources. This research examines data set as multispectral Landsat 8 satellite images that are detected for Basrah city, located in southern Iraq, and positioned between Kuwait and Iran on the Shatt al-Arab. Such raw data are satellite images. Using ENVI 5.3 softw
... Show MoreWater Quality Index (WQI) as a tool to assess the water quality status provides advice related to the use of water quality monitoring data and it is a way for combining the complex water quality data into a single value or single statement.The present study was conducted on Al- Hilla river in the middle of Iraq from August 2012 to July 2013 at five selected stations in the river, from Al- Musaib city to Al- Hashimya at the south of Hilla to determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation (IWQI).This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management, and decision making. According to th
... Show MoreThe objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreDiyala River is a tributary of Tigris River, it is one of the important rivers in Iraq. It covers a total distance of 445 km (275 miles). 32600 km2is the area that drains by Diyala River between Iraqi-Iranian borders. This research aims to evaluate the water quality index WQI of Diyala River, where three stations were chosen along the river. These stations are D12 at Jalawlaa City at the beginning of Diyala River, the second station is D15 at Baaquba City at the mid distance of the river, and the third station is D17 which is the last station before the confluence of Diyala River with Tigris River at Baghdad city. Bhargava method was used in order to evaluate the water quality index for both irrigation and drink
... Show MoreThis study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S