Preferred Language
Articles
/
IxegL48BVTCNdQwCel7Z
Deep understanding skills and their relationship to mathematical modelling among fifth grader
...Show More Authors

Abstract: The aim of the current research is to identify (the relationship between deep understanding skills and mathematical modeling among fifth grade students) the research sample consisted of (411) male and female students of the fifth grade of biology distributed over the General Directorates of Education in Baghdad / Al-Rusafa / 2 / and Al-Karkh / 1 /, and two research tools were built: 1- A test of deep understanding skills, consisting of (20) test items and a scale for two skills. 2- The second test consists of (24) test items distributed among (18) essay items and (6) objective items. The psychometric properties of validity, stability, discriminatory strength, and effectiveness of alternatives were verified for the two tests for students. The descriptive, analytical and inferential research method was used, and three statistical hypotheses were formulated for the research, which are as follows: 1- There is a statistically significant difference at the significance level (0.05) between the hypothetical mean and the arithmetic mean of the students' scores in general in the tests of deep understanding skills. 2- There is no statistically significant difference at the level of significance (0.05) between the hypothetical mean and the arithmetic mean of the students’ scores in general in the tests of mathematical modeling skills. 3- There is no statistically significant relationship at the significance level (0.05) between the skills of deep understanding and the skills of mathematical modeling among the students of the fifth scientific grade in general. These hypotheses were tested by statistical methods (parametric and non-parametric methods) test, estimates of the effect coefficients according to the simple non-linear regression model of the cubic polynomial, Pearson's simple correlation coefficient, half-segmentation method, non-parametric Mann-Whitney test, (Ki-test). Square), and this was achieved by using the ready-made statistical package (SPSS), and the search results were as follows: 1- There is a similarity in the low level of students' responses in general in the skills of deep understanding. 2- A low level of students' responses in general to the test of mathematical modeling skills was achieved. 3- There is a correlation according to the polynomial model used between the effect of mathematical modeling skills on the dimension function of deep understanding skills for the two groups of male and female students. In light of the results of the research, the researcher recommended several recommendations, including: the inclusion of the mathematics curriculum with exercises, activities and exercises that require employing mathematical modeling skills and deep understanding skills, and working to increase the qualification and training of mathematics teachers by preparing special training courses for this purpose related to introducing them to mathematical modeling and its importance and how to implement it in the classroom , the researcher suggested several proposals, including: Conducting a study to reveal the ability of mathematics teachers on mathematical modeling skills

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (17)
Scopus Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Deploying Facial Segmentation Landmarks for Deepfake Detection
...Show More Authors

Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Semigroup ideal in Prime Near-Rings with Derivations
...Show More Authors

In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 23 2022
Journal Name
Innovative Infrastructure Solutions
Experimental modeling of a single pile in liquefiable soil under the effect of coupled static-dynamic loads
...Show More Authors

In this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
COMPUTATIONAL ANALYSIS OF THE MIXING ZONE IN THE COMBUSTION CHAMBER OF RAMJET
...Show More Authors

A theoretical analysis of mixing in the secondary combustion chamber of ramjet is presented. Theoretical investigations were initiated to insight into the flow field of the mixing zone of the ramjet combustor and a computer program to calculate axisymmetric, reacting and inert flow was developed. The mathematical model of the mixing zone of ramjet comprises differential equations for: continuity, momentum, stagnation enthalpy, concentration, turbulence energy and its dissipation rate. The simultaneous solution of these equations by means of a finite-difference solution algorithm yields the values of the variable at all internal grid nodes.
The results showed that increasing air mass flow (0.32 to 0.64 kg/s) increases the development o

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Intelligent System for Parasitized Malaria Infection Detection Using Local Descriptors
...Show More Authors

Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Photonics &amp; Lasers In Medicine
The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations/Die Beurteilung von pathologischen Veränderungen der Hirndurchblutung bei hypertensiven Ratten mit Stress-induzierten intrakraniellen Blutungen mittels Doppler-OCT: Besonderheiten von arteriellen und venösen Veränderungen
...Show More Authors
Abstract<p>Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst</p> ... Show More
View Publication
Scopus (13)
Crossref (2)
Scopus Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network
...Show More Authors

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref