Imidacloprid is systemic insecticide (1-[(6-chloro-3-pyridinyl) methyl]-N-nitro-2-imidazolidinimine) and the world’s most widely used has significant efficacy against a broad variety of pests and a unique mode of action by using it spreader and irrigation. The persistence of this pesticide in the soil means that it causes environmental damage that must be cleaned up. In this study collected and identified the best bacteria isolate that breakdown imidacloprid from the Plant Protection Director in Baghdad, which has been using neonicotinoid pesticides for years in their own greenhouse for pest control. Using high-performance liquid chromatography HPLC to measuring the residual concentrations of imidacloprid in MSM media at a concentration o
... Show MoreOrganofluorines, as a pollutant, belongs to a group of substances which are very difficult to neutralize. They are part of many products of everyday use and for this reason they pollute the environment in large quantities. Perfluorinated carboxylic acids are entered into the list of the “Stockholm Convention on Persistent Organic Pollutants” in order to minimize the load on the environment by significantly reducing their use, up to their complete rejection. The DD4 strain was isolated from the soil by the enrichment method and identified using 16S rRNA method as Pseudomonas plecoglossicida. It is able to metabolize perfluorooctanoic acid (PFOA) as the only carbon source in Raymond nutrient medium with a concentration of 1000
... Show MoreIsolation and identification fungi of Emericella nidulans and Aspergillus flavus from a pinkish and yellowish artificial clay, by using potato dextrose agar (PDA). Results revealed that E. nidulans was the best for degrading anthracene (92.3%) with maximum biomass production (3.7gm/l), compared to A. flavus with the rate of degradation (89%) and biomass production of (1.2gm/l), when methylene blue was used as redox indicator after incubating in a shaker incubator 120rpm at 30Co for 8days. Results indicated that E. nidulans has a high ability of anthracene degradation with the rate of (84%), while A. flavus showed the lower level with (77%) by using HPLC.
Recent studies have proved the important role of fungi in the biodegradation of oil pollutants. The present study aims to find the optimal conditions for the fungi to get the best rate of the biodegradation of the polycyclic aromatic hydrocarbon (PAHs) (Naphthalene) compounds. Soil samples were taken from 18 different sites polluted with oil wastes and cultured then obtained 312 isolated fungi from 64 replicates Primarily screening were done on fungal isolates on solid media containing naphthalene the results revealed that 25 fungal isolates gave good growth, 47 fungal isolates gave Moderate growth, 66 gave weak growth and 147 fungal isolates gave no growth on Naphthalene solid media.
Then secondary screening were done on 25 fungal is
Recent studies have proved the important role of fungi in the biodegradation of oil pollutants. The present study aims to find the optimal conditions for the fungi to get the best rate of the biodegradation of the polycyclic aromatic hydrocarbon (PAHs) (Naphthalene) compounds. Soil samples were taken from 18 different sites polluted with oil wastes and cultured then obtained 312 isolated fungi from 64 replicates Primarily screening were done on fungal isolates on solid media containing naphthalene the results revealed that 25 fungal isolates gave good growth, 47 fungal isolates gave Moderate growth, 66 gave weak growth and 147 fungal isolates gave no growth on Naphthalene solid media.
Then secondary screening were done on 25 fungal is
Due to the deliberate disposal of industrial waste, a great amount of petroleum hydrocarbons pollute the soil and aquatic environments. Bioremediation that depends on the microorganisms in the removal of pollutants is more efficient and cost-effective technology. In this study, five rhizobacteria were isolated from Phragmites australis roots and exposed to real wastewater from Al-Daura refinery with 70 mg/L total petroleum hydrocarbons (TPH) concentration. The five selected rhizobacteria were examined in a biodegradation test for seven days to remove TPH. The results showed that 80% TPH degradation as the maximum value by Sphingomonas Paucimobilis as identified with Vitek® 2 Compact (France).
Terrestrial isopods play an important role in the biodegradation of many wastes which gives agreat importance in the nutrient cycles and ecosystem services , therefore this paper aims to use species
The current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) b
... Show MoreThe current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) b
... Show MoreIn this study, wax worm larvae (Galleria mellonella) were used to examine their ability to degrade and assimilate polyethylene (PE) as an energy source. This idea came from the similarity of wax, that is used as the sole diet for larvae, with PE in composition. Morphology changes, weight loss, FTIR analysis and GC-Mass test were studied to prove the degradation of PE by G. mellonella. The maximum depth of holes on the plastic surface and 16% PE weight loss was due to extensive cutting. The creation of a novel O-H stretching alcohols/phenols group absorbance peak at 3293cm-1 observed in wax worm larvae PE frass samples may be due to the oxidation in their gut. Accordingly, the biodegradation of PE by
... Show More