Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line. Furthermore, the shape and height of peak and dip broadening depend on the primary electron energy and incidence position with respect to the interfacing line. The last feature is that the spatial resolution of the backscattered signal at the interfacing line is improving by decreasing the primary electron energy (below 5 keV) and the shared element (Si) concentration. On the other hand, a poor compositional contrast has been shown at low primary electron energy below 5 keV. For energies above 5 keV, the spatial resolution becomes weak. These results can be explained by the behavior of the incident electrons inside the solid (interaction volume), especially at a distance close to the interfacing line and their chance to backscatter out of the sample. In general, a good compositional contrast with a high spatial resolution can be achieved at primary electron energy equal to 1 keV. Keywords: Monte Carlo model, Backscattering electron coefficient, Si-Ge/Si, Elastic scattering, Spatial resolution, Compositional contrast.
In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreThe study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Qual
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreMagneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th
|
One of the most powerful tools for any stellar dynamics is the N-body simulation. In an N-body simulation the motion of N particles is followed under their mutual gravitational attraction. In this paper the gravitational N-body simulation is described to investigate Newtonian and non- Newtonian (modified Newtonian dynamics) interaction between the stars of spiral galaxies. It is shown that standard Newtonian interaction requires dark matter to produce the flat rotational curves of the systems under consideration, while modified Newtonian dynamics (MOND) theorem provides a flat rotational curve and gives a good agreement with the observed rotation cu |
The nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t
It is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual s
... Show More