One of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non-linear coefficient (49), energy absorption capability (3890Joul), and breakdown voltage (4040Volt), while the leakage current passes through the varistor decreased to the minimum value (41μA).
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreThe increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021
... Show MoreThe transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreImage quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreABSTRACT
Naproxen(NPX) imprinted liquid electrodes of polymers are built using polymerization precipitation. The molecularly imprinted (MIP) and non imprinted (NIP) polymers were synthesized using NPX as a template. In the polymerization precipitation involved, styrene(STY) was used as monomer, N,N-methylenediacrylamide (N,N-MDAM) as a cross-linker and benzoyl peroxide (BPO) as an initiator. The molecularly imprinted membranes and the non-imprinted membranes were prepared using acetophenone(AOPH) and di octylphathalate(DOP)as plasticizers in PVC matrix. The slopes and detection limits of the liquid electrodes ranged from)-18.1,-17.72 (mV/decade and )4.0 x 10-
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is an emerging zoonotic disease caused by the new respiratory virus SARS-CoV2. It has a tropism in the lung tissues where excess target receptors exist. Periostin plays a role in subepithelial fibrosis associated with bronchial asthma. Since the Coronavirus's target is the human respiratory system, Periostin has been recently described as a valuable new biomarker in the diagnosis and evaluation of disease in patients with COVID-19 lung involvement. Objectives: To assess the level of Periostin in the serum of COVID-19 patients and to correlate its role in disease severity and prognosis. Subjects and Methods: Periostin serum levels were measured for 63 patients attending three main COVID
... Show MoreSome parameters for advancement of Leishmania tropica infection were examined in three groups of golden hamsters, Group (1) inoculated with autoclaved killed Leishmania tropica , Group (2) inoculated with BCG vaccine alone while Group (3) Inoculated with mixed vaccine (autoclaved killed Leishmania with BCG). The follow up of experimentally infected animals with virulent isolation of Leishmania tropica was done for 90 days, the animals inoculated with mixed vaccine (autoclaved killed Leishmania with BCG) showed the minimum average in each of foot pad thickness (2.3 ± 0.05) mm after (60) days of infection, spleen enlargement (1.13±0.38) after (45) days of infection, spleen length (23.9±0.08) mm after (30) days of infection, liver weight(3.
... Show More