In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and laboratory specimens in addition to its accurate results. Comparing the numerical results of the mesoscale models of cement and asphalt concrete specimens with experimental data shows that these models can predict the behavior of these composite materials very well as seen in the curves of load-crack mouth opening displacement (CMOD). Also, the mesoscale modeling highlights the variability of crack direction where it is dependent on the random distribution of aggregate.
This work investigates the utilization of waste papers (natural and industrial) i.e (citrus aurantium and papers A4) mortars containing specified contents 0.5%, 1%, 1.5% of waste papers were prepared and cured. Mechanical characteristics such as compressive and bending strengths, hardness and water absorption were determined for the mortars mixed with the waste papers and compared with those obtained from the pure mortars. Results showed that the addition of waste paper leads to increase the hardness to (69 - 68.5) shore D for (natural and industrial) wastes materials respectively comparing with pure specimen 66 shore D. The compressed strength of the mortar cement specimen cured for 28 days from 13 MPa to (17-18) MPa for (natural and in
... Show MoreThrough an experimental program of eighteen specimens presented in this paper, the bond strength between reinforcing bar and rubberized concrete was produced by adding waste tire rubber instead of natural aggregate. The fine and coarse aggregate was replaced in 0%, 25%, and 50% with the small pieces of a waste tire. Natural aggregate replacement ratio, rebar size, embedded rebar length, the rebar yield stress of rebar, cover, and concrete compressive strength were studied in this investigation. Ultimate bond stress, bond stress-slip response, and failure modes were presented. The experimental results reported that a reduction of 19% in bond strength was noticed in 50% replaced rubberized concrete compared with convention
... Show MoreThis study “discusses the benefit of “addition waste paper as a “new cellulose material “in mortar mixes. A partial addition of waste paper by cement weight was achieved to produce cement composite mortar. Pulp and paper is the third major industrial dumper of air, soil and water. In recent year, paper and paperboard constitute a greater portion of many countries’ urban solid discarded generation. Beside, it increases characteristic “strength due to existence “of hydrogen links “in the microstructure of “paper. Furthermore, it consume “better thermal protection. The addition percentages “of waste paper used “in this work were (5%, 10%, 15% and 20%) by “mass of cement to measure and evaluat
... Show MoreThis research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.
Consequently, HS
... Show MoreMineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction
... Show MorePrevious experimental studies have suggested that hot mixed asphalt (HMA) concrete using hydrated lime (HL) to partially replace the conventional limestone dust filler at 2.5% by the total weight of all aggregates showed an optimum improvement on several key mechanical properties, fatigue life span and moisture susceptibility. However, so far, the knowledge of the thermal response of the modified asphalt concrete and thermal influence on the durability of the pavement constructed are still relatively limited but important to inform pavement design. This paper, at first, reports an experimental study of the tensile fatigue life of HMA concrete mixes designed for wearing layer application. Tests were conducted under three different temperatur
... Show MoreDue to increasing cost of asphalt binder, significant economic savings can be realized by using the amount from reclaimed asphalt pavement (RAP) in the production of new hot mix asphalt (HMA). Moreover, this is an environmentally friendly option as it reduces the demand for virgin materials. It has to be remarked that in Iraq RAP is not used in the production of HMA and this valuable material is mostly degraded for use in lower value applications. Four mixtures were designed, which contains three different percent RAP, it is (0%, 5%, 15%) with asphalt grade (40-50) and (25%) with asphalt grade (60-70), it has been changed the grade of asphalt when adding RAP (25%) to compensate for the aged binder in the RAP when adding to mixture. All type
... Show MoreSince its invention by the Ancient Romans and later developed during the mid-18th century, the concrete structure and finish, has been considered as the most powerful, practical, economic and constructional material that meets the building’s architectural and aesthetical requirements. By creating unique architectural forms, the pioneer architects used concrete widely to shape up their innovative designs and buildings.
The pre-mixed ultra-high performance concrete which manufactured by Lafarge.
The transparent concrete and cement that allow the light beams to pass through them, introduces remarkable well-lit architectural spaces within the same structural criteria. This product is a recyclable, sustainab
... Show More