In most Reinforced Concrete (RC) buildings, the cross-section size of rectangular columns that conventionally used in these structures is larger than the thickness of their partitions. Consequently, a part of the column is protruded out of the wall which has some architectural disadvantages. Reducing the column size by using high strength concrete will result in slender column, thus the stability problem may be occurred. The stability problem is difficult to be overcome with rectangular columns. This paper study the effectiveness of using new types of columns called Specially Shaped Reinforced Concrete (SSRC) columns. Besides, the use of SSRC columns provides many structural advantages when compared with traditional rectangular columns. This research was conducted to study the structural behavior of slender SSRC columns via nonlinear finite element analysis using Abaqus program. The study based on twenty-four RC column specimens of the same cross-sectional area and different shapes and Slenderness Ratios (SR). The results showed that the use of SSRC columns led to improve the strength by about 12% and reduce deformations as compared with the square-shaped specimen. However, the columns individually exhibited almost the same trend of decreasing the strength with increasing in SR. In general, a maximum loss in strength of about 10% was found when the SR increased to 40 and 35% for columns with SR of 80. Two design approaches were proposed to evaluate the strength of SSRC columns under concentric loading. The results obtained show a good structural response of SSRC columns as compared with square-shaped columns.
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
This work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreIn this paper, isobutane (R-600a) is used as a suitable substitute for (R-134a) when changing the length of capillary tube. And the experimental data on capillary tube are obtained under different conditions such as (subcooling and ambient temperatures) on domestic refrigerator (9ft3 size), this data shows that (R-600a) a suitable substitute for (R134a) .The test presented a model for a steady state, two-phase flow in capillary tube for vapour compression system .The numerical model depends on conservation equations (mass, energy and momentum) as wall as the equation of state for refrigerant. The solution methodology was implemented by using finite difference techniques. The system results indicate that it is possible to change the refri
... Show MoreOne of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried
... Show MoreAlthough many technological improvements are occurring in power production worldwide, power plants in third world countries are still using old technologies that are causing thermal pollution to the water bodies. Power facilities that dump hot water into water bodies are damaging aquatic life. In the study, the impact of the Al Dora thermal power plant on a nearby stretch of Tigris River in Baghdad city was assessed by measuring the temperature of the disposed of hot water in various cross-sections of the selected stretch of Tigris River, including measuring the thermal mixing length. The measurements were conducted in winter, spring, and summer. For field measurements, it was found that the impact of recovery distances
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
In this paper, a dynamic investigation is done for strip, rectangular and square machine foundation at the top surface of two-layer dry sand with various states (i.e., loose on medium sand and dense on medium sand). The dynamic investigation is performed numerically using finite element programming, PLAXIS 3D. The soil is expected as a versatile totally plastic material that complies with the Mohr-Coulomb yield criterion. A harmonic load is applied at the base with an amplitude of 6 kPa at a frequency of (2 and 6) Hz, and seismic is applied with acceleration – time input of earthquake hit Halabjah city north of Iraq. A parametric study is done to evaluate the influence of changing L/B ratio (Length=12,6,3 m and width=3 m), type of sand
... Show More