BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Sufficient high-quality data are unavailable to describe the management approach and guideline of COVID-19 disease in pediatric and adolescent population which may be due to mild presentation in most of cases and less severe complications than older ages.
World Health Organization was concerned with the establishment of an approved guideline to manage the increasing number of COVID-19 patients worldwide aiming to prevent or lessen COVID-19 global burden.
The clinical features have a wide spectrum starting from uncomplicated mild illness, mild-moderate pneumonia, severe pneumonia, acute respiratory distress syndrome, sepsis, septic shock, and multisystem inflammatory syndrome in children.
Many important definitions
... Show MoreThe study of the dynamic behavior of packed distillation column was studied by frequency response analysis using Matlab program. A packed distillation column (80 mm diameter) (2000 mm height) filled with glass packing (Raschig Rings 10mm), packing height (1500 mm) has been modified for separation of methanol-water mixture (60 vol%). The column dynamic behavior was studied experimentally under different step changes in, feed rate (±30%), reflux rate (±22%), and reboiler heat duty (±150%), the top and bottom concentration of methanol were measured. A frequency response analysis for the above step response was carried out using Bode diagram, the log modulus and the phase angle were used to analyze the process model. A Matlab progra
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreMaximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show MoreAbstract
Multivariate GARCH Models take several forms , the most important DCC dynamic conditional correlation, and CCC constant conditional correlation , The Purpose of this research is the Comparison for both Models.Using three financial time series which is a series of daily Iraqi dinar exchange rate indollar, Global daily Oil price in dollar and Global daily gold price in dollarfor the period from 01/01/2014 till 01/01/2016, Where it has been transferred to the three time series returns to get the Stationarity, some tests were conducted including Ljung-Box , JarqueBera , Multivariate ARCH to Returns Series and Residuals Series for both models In Comparison
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show MoreControlling public expenditures is one of the main objectives of the public budget. The public budget often suffers from a deficit, whether in developed or developing countries, because expenditures are usually greater than the revenues generated. This requires the existence of financial rules that are adhered to by the government, which in turn leads to discipline. Fiscal policy leads to a reduction in the obligations incumbent on the government. Adhering to the financial rules would correct the course of fiscal policy in Iraq, with the need to direct oil revenues in the years of financial abundance when global oil prices rise to sovereign funds similar to other rentier countries, which contributes to maintaining the stabi
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show More