Preferred Language
Articles
/
Ihj1KZgBVTCNdQwC6brG
A HYBRID CUCKOO SEARCH AND BACK-PROPAGATION ALGORITHMS WITH DYNAMIC LEARNING RATE TO SPEED UP THE CONVERGENCE (SUBPL) ALGORITHM
...Show More Authors

BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.

Publication Date
Sun Oct 18 2020
Journal Name
Al-kindy College Medical Journal
Management of COVID-19 in Children and Adolescents -A Practical Up-to Date Guideline
...Show More Authors

Sufficient high-quality data are unavailable to describe the management approach and guideline of COVID-19 disease in pediatric and adolescent population which may be due to mild presentation in most of cases and less severe complications than older ages.

World Health Organization was concerned with the establishment of an approved guideline to manage the increasing number of COVID-19 patients worldwide aiming to prevent or lessen COVID-19 global burden.

The clinical features have a wide spectrum starting from uncomplicated mild illness, mild-moderate pneumonia, severe pneumonia, acute respiratory distress syndrome, sepsis, septic shock, and multisystem inflammatory syndrome in children.

Many important definitions

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 22 2024
Journal Name
Journal Of Petroleum Research And Studies
Optimizing Well Placement with Genetic Algorithms: A Case Study
...Show More Authors

Maximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty

... Show More
View Publication
Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Educational And Psychological Researches
Perceptual Speed and Its Relation to the Emotional Patterns of University Students: Perceptual Speed and Its Relation to the Emotional Patterns of University Students
...Show More Authors

 

The current research aims to identify the perceptual speed of the university students as well as to identify the differences in the level of perceptual speed for the university students according to the variables of (male, female) specialization (scientific, human) university (Baghdad, Mustansiriya). Additionally, the research aims to identify the prevalence of emotional pattern and to identify the relationship between perceptual speed and the emotional patterns among university students. The researcher designed a questionnaire to measure the Emotional Patterns based on Jerome Freedman perspective. As for perceptual speed, the researcher adopted French, Extrom and Price scale (1963), which was tran

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Study in to the Dynamic Behavior of Packed Distillation Column
...Show More Authors

The study of the dynamic behavior of packed distillation column was studied by frequency response analysis using Matlab program. A packed distillation column (80 mm diameter) (2000 mm height) filled with glass packing (Raschig Rings 10mm), packing height (1500 mm) has been modified for separation of methanol-water mixture (60 vol%). The column dynamic behavior was studied experimentally under different step changes in, feed rate (±30%), reflux rate (±22%), and reboiler heat duty (±150%), the top and bottom concentration of methanol were measured. A frequency response analysis for the above step response was carried out using Bode diagram, the log modulus and the phase angle were  used to analyze the process model. A Matlab progra

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 19 2024
Journal Name
Iraqi Statisticians Journal
Forecasting Gold prices by hybrid ANFIS-based algorithm
...Show More Authors

In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca

... Show More
View Publication
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Nurse Scheduling Problem Using Hybrid Simulated Annealing Algorithm
...Show More Authors

Nurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
The Effectiveness of Indicators of Financial Discipline in Strengthening the Exchange Rate, with a Special Reference to Iraq
...Show More Authors

Controlling public expenditures is one of the main objectives of the public budget. The public budget often suffers from a deficit, whether in developed or developing countries, because expenditures are usually greater than the revenues generated. This requires the existence of financial rules that are adhered to by the government, which in turn leads to discipline. Fiscal policy leads to a reduction in the obligations incumbent on the government.  Adhering to the financial rules would correct the course of fiscal policy in Iraq, with the need to direct oil revenues in the years of financial abundance when global oil prices rise to sovereign funds similar to other rentier countries, which contributes to maintaining the stabi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a

... Show More
View Publication
Scopus (10)
Scopus Crossref