Preferred Language
Articles
/
Ihj1KZgBVTCNdQwC6brG
A HYBRID CUCKOO SEARCH AND BACK-PROPAGATION ALGORITHMS WITH DYNAMIC LEARNING RATE TO SPEED UP THE CONVERGENCE (SUBPL) ALGORITHM
...Show More Authors

BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.

Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Mar 16 2022
Journal Name
2022 Muthanna International Conference On Engineering Science And Technology (micest)
A hybrid feature selection technique using chi-square with genetic algorithm
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Internet And Distributed Computing Systems
A Proposed Adaptive Rate Algorithm to Administrate the Video Buffer Occupancy for Smooth Video Streaming
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Dynamic algorithm (DRBLTS) and potentially weighted (WBP) to estimate hippocampal regression parameters using a techniqueBootstrap (comparative study)
...Show More Authors

Bootstrap is one of an important re-sampling technique which has given the attention of  researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such  Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Speech Enhancement Algorithm Based on a Hybrid Estimator
...Show More Authors
Abstract<p>Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra</p> ... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Sun Oct 02 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Static and Dynamic Behavior of Circularized Reinforced Concrete Columns Strengthened with Hybrid CFRP
...Show More Authors

In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref