Scientific development has occupied a prominent place in the field of diagnosis, far from traditional procedures. Scientific progress and the development of cities have imposed diseases that have spread due to this development, perhaps the most prominent of which is diabetes for accurate diagnosis without examining blood samples and using image analysis by comparing two images of the affected person for no less than a period. Less than ten years ago they used artificial intelligence programs to analyze and prove the validity of this study by collecting samples of infected people and healthy people using one of the Python program libraries, which is (Open-CV) specialized in measuring changes to the human face, through which we can infer the infection. Smart technologies have provided the medical field with health predictions for early detection, and digital diagnosis is one of the most important sources on which research has relied on. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The purpose of this study is to investigate the research on artificial intelligence algorithms in football, specifically in relation to player performance prediction and injury prevention. To accomplish this goal, scholarly resources including Google Scholar, ResearchGate, Springer, and Scopus were used to provide a systematic examination of research done during the last ten years (2015–2025). Through a systematic procedure that included data collection, study selection based on predetermined criteria, categorisation based on AI applications in football, and assessment of major research problems, trends, and prospects, almost fifty papers were found and analysed. Summarising AI applications in football for performance and injury p
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe primary goal of root canal treatment (RCT) is to expel the presence of any necrotic or vital tissue, microbes and their byproducts from the canal space before press forward with the following steps of the RCT procedures. Although this is difficult to attain, various strives had been practiced by employing chemical and mechanical methods to eliminate as much microorganisms as possible and make the canal space valid for the obturation materials to be received. The aim of this review is to demonstrate some of what new remedies that could be used as root canal disinfectant by summarizing the recent studies regarding the efficacy of different natural products against the most persistence microbiota that could be responsible for most
... Show MoreThis review examines how artificial intelligence (AI) including machine learning (ML), deep learning (DL), and the Internet of Things (IoT) is transforming operations across exploration, production, and refining in the Middle Eastern oil and gas sector. Using a systematic literature review approach, the study analyzes AI adoption in upstream, midstream, and downstream activities, with a focus on predictive maintenance, emission monitoring, and digital transformation. It identifies both opportunities and challenges in applying AI to achieve environmental and economic goals. Although adoption levels vary across the region, countries such as Saudi Arabia, the UAE, and Qatar are leading initiatives that align with global sustainability targets.
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show More