The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinamide (L2) N1,N4-bis((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) carbamothioyl)succinamide (L3) N1,N4-bis((4-(N-(5-methylisoxazol-3-yl)sulfamoyl) phenyl) carbamo thioyl) succinamide (L4) The new ligands were identified using spectroscopic measurements that included (FT-IR spectra, UV-Vis spectra, and nuclear magnetic resonance (1H, 13CNMR) spectra, mass spectra, elemental analysis (C.H.N.S), and thermal analysis (TGA&DSC), as the results of the measurements proved to be identical to the proposed molecular formula for these ligands. A series of metal complexes for ligands was also prepared, which included seven complexes for each ligand, by adding each of the metal ions to the four ligands prepared in succession to produce the following molecular formulas: - [M2(L)Cl4] , L= L1, L2, L3, L4 (M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II)) The prepared complexes were diagnosed by several techniques, including the study of the infrared spectra of the prepared complexes, and when comparing those spectra with the spectra of each of the four ligands prepared in the free form, these gave clear changes, including the emergence of a new band within the fingerprint area. It was not originally present in the spectra of ligands in their free form, and this is due to the occurrence of coordination between the metal ions under study and the donor atoms, which are the oxygen atom of the (C=O) group, and the sulfur atom of the (C=S) group in the ligands. (L1-L4), while other distinct bands were obtained with clear changes in shape, intensity, and location, and this is an indication of the occurrence of a coordination process between the metal ions under study and the four prepared ligands. The percentage of metal ions in the prepared complexes was determined by flame atomic absorption spectrometry, where it was shown from the careful analysis of the elements the great agreement between the percentages calculated theoretically and obtained practically. The magnetic sensitivity results showed that some of the prepared metallic complexes have paramagnetic properties. The measurements of the molar conductivity of the prepared complexes dissolved in DMSO at a concentration of 1×10-3 M and at the laboratory temperature showed that they are of a non-electrolytic nature. The prepared complexes were also studied through solubility, melting point, and ultraviolet-visible techniques, and through the data of all the aforementioned techniques, structural formulas were proposed for the prepared complexes, through which it was found that the prepared ligands are bivalve chelating ligands that lead to their participation as ligand into complexes with a tetrahedral geometric shape for all metallic complexes under study. The research included a study evaluating the antioxidant activity of some selected metal complexes by studying the amount of radical scavenging of DPPH* compared to ascorbic acid as an antioxidant reference agent. The zinc complex showed higher activity than the nickel complex compared to standard ascorbic acid. The [Cu2(L1)Cl4] and [Co2(L1)Cl4] complexes were also tested as antibodies to inhibit the breast cancer cell line (MCF-7) and compared with the normal cell line (HdFn), where the copper complex showed the ability to inhibit the cancerous cell line compared with the cobalt complex. The molecular binding of ligands (L3) and (L4) was also studied, and their possibility of using them as drugs in the treatment of some diseases, where the ligand L3 showed better association with the active site of the enzyme than the ligand L4, and is expected to highest antimicrobial effect. Finally, the biological effect of the prepared ligands and some of their complexes on the growth of two types of bacteria, Escherichia coli and Staphylococcus aureus, was studied using DMSO solvent, where the complexes showed greater activity than the ligands against the selected types of bacteria.
A OUI,tiper of LWW lig_;:tnds .of ppen sides. of Bis-'Oxad1azoJe· and·
Bis-triazole derived from dichloroetbane and [Bis 0-ohloro et!:ty)
= :=:: =
ether)] (BCEE)' wersynthesi:zed. These inelude: 1, 4- bis[-3{thio- 2 -
. (Chloro·ethyl)l1 1;4 - oxadiazole ......$yl] butane (-L I);1 4 B'is {phenl-
3{th
... Show MoreA theoretical analysis studied was performed to study the opacity broadening of spectral lines emitted from aluminum plasma produced by Nd-YLF laser. The plasma density was in the range 1028-1026 )) m-3 with length of plasma about ?300) m) , the opacity was studied as function of plasma density & principle quantum number. The results show that the opacity broadening increases as plasma density increases & decreases with the spacing between energy levels of emission spectral line.
In this study, new heterocyclic compounds were synthesized through the cyclization reactions of o-phenylenediamine (1) with various organic reagents. Benzodiazepine derivatives (2-4) were obtained by reaction of (1) with ethylacetoacetate, malonic acid and acetyl acetone.Treatment of compound (1) with chloroacetamide, chloroacetic acid, p-bromophenacyl bromide and oxalic acid dihydrate afforded quinoxaline derivatives (5-8), respectively. Reaction of compound (1) with benzoic acid, piperonal, cyclohexanone and carbon disulfide resulted in the formation of compounds (9-12), respectively. Finally, reaction of compound (12) with chloroacetic acid in the presence of potassium hydroxide produced compound (13).
A new ligand [ 2-chloro-N- (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro -1H-pyrazol- 4-ylcarbamothioyl)acetamide](L) was synthesized by reacting the Chloro acetyl isothiocyanate with 4-aminoantipyrine,The ligand was characterized by(C HNS) elemental microanalysis and the spectral measurements including Uv-Vis ,IR ,1H and13C NMR spectra, some transition metals complex of this ligand were prepared and characterized by Uv-Vis, FT-IR spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(L)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [4-chloro-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylcarb amothioyl) benzamide] (CAP) was synthesized by reaction of P-ChloroBenzoyl isothio cyanate with 4- aminoantipyrine,The ligand was characterized by micro elemental analysis C.H.N.S.,FT-IR,UV-Vis and1H13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(CAP)2(H2O)2]Cl2(M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
Starting from bis (4,4'-diamino phenoxy) ethan(1), a variety of phenolicschiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis, some derivatives evaluated by thermal analysis (TGA).
Three azo compounds were synthesized in two different methods, and characterized by FT-IR, HNMR andVis) spectra, melting points were determined. The inhibitory effects of prepared compounds on the activity of human serum cholinesterase have been studied in vitro. Different concentrations of study the type of inhibition. The results form line weaver-Burk plot indicated that the inhibitor type was noncompetitive with a range (33.12-78.99%).
Coumarin is a natural substance isolated from different plants. It belonges to a group of benzobyrones which consists of a benzene ring joined to a pyrone nucleus. In the present research, a new series of coumarin derivatives were formed. Compound (1) (7-hydroxy-4-methyl Coumarin) was converted into 4-methylquinolin-2(H) derivative (2) by reaction with acetamide, and then reaction of (2) with thiosemicarbazide in ethanol leads to the synthesize of hydrazincarbothioamide derivative (3).The reaction of (3) with ethylchloroacetate in presence of sodium acetate leads to closure ring to get [(1-(5-oxo-2-thioxoimidazolidin-1-ylimino) ethyl)]quinolin-2(1H)-one (4). Mannich bases were prepared through the reaction of (4) with primary
... Show MoreThe synthesis of new benzodiazepine, imidazole, isatin, maleimide, pyrimidine and 1,2,4-triazole derived from 2-amino-4-hydroxy-1,3,5-triazine, via its cyclocondensation reaction with different organic reagents, is described. FT-IR, 1H-NMR and as well as 13C-NMR spectra disclosed the structures of the precursors and heterocyclic derivatives formed.