The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinamide (L2) N1,N4-bis((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) carbamothioyl)succinamide (L3) N1,N4-bis((4-(N-(5-methylisoxazol-3-yl)sulfamoyl) phenyl) carbamo thioyl) succinamide (L4) The new ligands were identified using spectroscopic measurements that included (FT-IR spectra, UV-Vis spectra, and nuclear magnetic resonance (1H, 13CNMR) spectra, mass spectra, elemental analysis (C.H.N.S), and thermal analysis (TGA&DSC), as the results of the measurements proved to be identical to the proposed molecular formula for these ligands. A series of metal complexes for ligands was also prepared, which included seven complexes for each ligand, by adding each of the metal ions to the four ligands prepared in succession to produce the following molecular formulas: - [M2(L)Cl4] , L= L1, L2, L3, L4 (M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II)) The prepared complexes were diagnosed by several techniques, including the study of the infrared spectra of the prepared complexes, and when comparing those spectra with the spectra of each of the four ligands prepared in the free form, these gave clear changes, including the emergence of a new band within the fingerprint area. It was not originally present in the spectra of ligands in their free form, and this is due to the occurrence of coordination between the metal ions under study and the donor atoms, which are the oxygen atom of the (C=O) group, and the sulfur atom of the (C=S) group in the ligands. (L1-L4), while other distinct bands were obtained with clear changes in shape, intensity, and location, and this is an indication of the occurrence of a coordination process between the metal ions under study and the four prepared ligands. The percentage of metal ions in the prepared complexes was determined by flame atomic absorption spectrometry, where it was shown from the careful analysis of the elements the great agreement between the percentages calculated theoretically and obtained practically. The magnetic sensitivity results showed that some of the prepared metallic complexes have paramagnetic properties. The measurements of the molar conductivity of the prepared complexes dissolved in DMSO at a concentration of 1×10-3 M and at the laboratory temperature showed that they are of a non-electrolytic nature. The prepared complexes were also studied through solubility, melting point, and ultraviolet-visible techniques, and through the data of all the aforementioned techniques, structural formulas were proposed for the prepared complexes, through which it was found that the prepared ligands are bivalve chelating ligands that lead to their participation as ligand into complexes with a tetrahedral geometric shape for all metallic complexes under study. The research included a study evaluating the antioxidant activity of some selected metal complexes by studying the amount of radical scavenging of DPPH* compared to ascorbic acid as an antioxidant reference agent. The zinc complex showed higher activity than the nickel complex compared to standard ascorbic acid. The [Cu2(L1)Cl4] and [Co2(L1)Cl4] complexes were also tested as antibodies to inhibit the breast cancer cell line (MCF-7) and compared with the normal cell line (HdFn), where the copper complex showed the ability to inhibit the cancerous cell line compared with the cobalt complex. The molecular binding of ligands (L3) and (L4) was also studied, and their possibility of using them as drugs in the treatment of some diseases, where the ligand L3 showed better association with the active site of the enzyme than the ligand L4, and is expected to highest antimicrobial effect. Finally, the biological effect of the prepared ligands and some of their complexes on the growth of two types of bacteria, Escherichia coli and Staphylococcus aureus, was studied using DMSO solvent, where the complexes showed greater activity than the ligands against the selected types of bacteria.
A new Schiff base ligand [2,3,8,9–tetra -phenyl-1,4,5,7,10,12-hexa azo-5,12- dihydro -6,11- dione 1,3,7,10-dudec-tetra-ene] [H2L] and its complexes In general formula [M(H2L)]Cl2 (where : M= CoII, NiII, and PdII) were prepared. This ligand was prepared in two steps,in the first step a solution of benzil in methanol was reacted under reflux with semicarbazidhydrochlorid to give an (intermediate compound)[benzyl bis–(Semicarbazone)] which was reacted in the second step with benzil giving the mentioned ligand. The
... Show MoreAzo ligand 4-((2-hydroxy-3,5-dimethylphenyl)diazenyl) benzoic acid was synthesized from 4-aminobenzoic acid and 2,4- dimethylphenol. Azo dye compounds have been characterized by different techniques (1H-NMR, UV-Vis and FT-IR). Metal chelates of (ZnII, CdII and HgII) have been synthesized with azo ligand (L). Produced compounds have been identified by using spectral studies, elemental analysis(C.H.N.) and conductivity. Produced metal chelates were studied using mole ratio as well sequences contrast types. Rate of concentration(1×10-4-3×10-4 Mole/L) sequence Beer's law. Compound solutions have been noticed height molar absorptivity. The addendum of ligand and compounds has applied as disperse dyes on cotton fabrics for antibacterial activit
... Show MoreNew complexes of the some trivalent transition metal ions of the uracil such as [M(Ura)3Cl3] and mixed ligand metal complexes with uracil and oxalic acid [M(Ura)2(OA)(OH2)Cl].H2O type, where (Ura)=Uracil, (OA= Oxalic acid dihydrate, (M= Cr+3 and Fe+3) were synthesized and characterized by the elemental analysis, FT.IR, electronic spectra, mass spectra and magnetic susceptibility as well as the conductivity measurements. Six–coordinated metal complexes were suggested for the isolated complexes of Cr+3 and Fe+3 with molecular formulas dependent on the nature of uracil and oxalic acid present. The proposed molecular structure for all complexes with their ions is octahedral geometries. The antibacterial efficiency was tested of metal salts, l
... Show MoreThis article includes designed and synthesized for bent-shaped liquid crystal molecules starting from 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of chloroacetylchloride in N, N-dimethyl formamide (DMF) and triethylamine (TEA) to product compound [I] ,then reacted the later compound with two moles of 4-hydroxybenzonitrile to yield nitrile compound [II]. Likewise, reaction 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of ethylchloroacetate with fused sodium acetate in ethanol to create an ester compound [III], and then the later compound was reacted with two moles of hydrazine hydrate in ethanol to obtained hydrazide acid compound [IV]. After that, the compound [IV] reacted with two moles of ethyl acetoacetate in
... Show MoreAddition chloro acetyl isothiocyanate (C3H2ClNOS) with 3-Aminoaceto phenone (C8H9NO) to prepare a fresh Ligand [N-(3-acetyl phenyl carbamothioyl)-2-chloroacetamide](L). The ligand (L) behaves as bidentate coordinating through O and S donor with metal ions, the general formula of all complexes [M(L)2(Cl)2](M+2 = Manganese(II), Cobalt(II), Cadmium(II) and Mercury(II)). Compounds were investigation by Proton-1, Carbon -13 NMR spectra (ligand (L) only), Element Microanalysis for C, N, H, O, S, Fourier-transform infrared, UV visible, Conductance
A new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
4,4'-(pyridine-2,6-diylbis(1,3,4-oxadiazole-5,2-diyl))bisphenol monomer (3)was synthesized from cyclization of N'2,N'6-bis(4-hydroxybenzylidene)pyridine-2,6-dicarbohydrazide (2)in the presence of bromine in glacialacetic acid. Newly five polymers (P1-P5) were synthesized from reaction bis-1,3,4-oxadiazole bisphenolmonomer with five different di acid chloride. The antibacterial activity of the synthesized polymers was screened against gram positive and gram negative bacteria. Polymers P4 and P5 exhibited significant antibacterial against all microorganisms, as well these polymers showed highest antifungal activity.
This work includes the synthesis of some new five- seven heterocyclic rings derived from benzenesulfonylhydrazide as starting material. Its condensation with 4-methoxy and 4nitro benzaldehyde gives the Schiff bases (1a,b). Schiff bases were reacted with cyclic anhydrides given Oxazepine, Thiazepine derivatives(2,3,4 a,b)(seven membered ring) and with 2-mercapto benzoic acid gives thiazine derivatives (6a,b)(six membered ring) finally with thioglycolic acid give thiazolidine ring(five membered ring) scheme(3). The synthesized compounds have been characterized by melting points,FT-IR, 1H-NMR spectroscopy ,13CNMR and Elemental analysis. some of synthesized compounds were tested for their antibacterial activity
... Show MoreThree complexes of copper(II) and iron(II) with mixed ligands acetylacetonebis(thio-semicarbazone)- ABTSH2 and benzaldazine- BA have been prepared and characterized using different physico-chemical techniques including the determination of metal contents, mole-cular weight, measurement of molar conductivity, magnetic moment, molar refraction, infrared and electronic spectra. Accordingly, octahedral complexes having general formulaes [Cu2(ABTSH2)2(BA)2Cl2]Cl2 and [M2(ABTSH2)2(BA)2(SO4)2] {M= Cu(II) or (Fe(II)} have been proposed. The resulted complexes screened for antifungal activity in vitro against the citrus pathogen Aspergillus niger and Fusarium sp. which caused root rot of sugar and the beans pathogen Alternaria sp. All the complex
... Show MoreEuropean Chemical Bulletin (ISSN 2063-5346) is a peer-reviewed journal that publishes original research papers, short communications, and review articles in all areas of chemistry. European Chemical Bulletin has eight sections, namely