The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinamide (L2) N1,N4-bis((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) carbamothioyl)succinamide (L3) N1,N4-bis((4-(N-(5-methylisoxazol-3-yl)sulfamoyl) phenyl) carbamo thioyl) succinamide (L4) The new ligands were identified using spectroscopic measurements that included (FT-IR spectra, UV-Vis spectra, and nuclear magnetic resonance (1H, 13CNMR) spectra, mass spectra, elemental analysis (C.H.N.S), and thermal analysis (TGA&DSC), as the results of the measurements proved to be identical to the proposed molecular formula for these ligands. A series of metal complexes for ligands was also prepared, which included seven complexes for each ligand, by adding each of the metal ions to the four ligands prepared in succession to produce the following molecular formulas: - [M2(L)Cl4] , L= L1, L2, L3, L4 (M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II)) The prepared complexes were diagnosed by several techniques, including the study of the infrared spectra of the prepared complexes, and when comparing those spectra with the spectra of each of the four ligands prepared in the free form, these gave clear changes, including the emergence of a new band within the fingerprint area. It was not originally present in the spectra of ligands in their free form, and this is due to the occurrence of coordination between the metal ions under study and the donor atoms, which are the oxygen atom of the (C=O) group, and the sulfur atom of the (C=S) group in the ligands. (L1-L4), while other distinct bands were obtained with clear changes in shape, intensity, and location, and this is an indication of the occurrence of a coordination process between the metal ions under study and the four prepared ligands. The percentage of metal ions in the prepared complexes was determined by flame atomic absorption spectrometry, where it was shown from the careful analysis of the elements the great agreement between the percentages calculated theoretically and obtained practically. The magnetic sensitivity results showed that some of the prepared metallic complexes have paramagnetic properties. The measurements of the molar conductivity of the prepared complexes dissolved in DMSO at a concentration of 1×10-3 M and at the laboratory temperature showed that they are of a non-electrolytic nature. The prepared complexes were also studied through solubility, melting point, and ultraviolet-visible techniques, and through the data of all the aforementioned techniques, structural formulas were proposed for the prepared complexes, through which it was found that the prepared ligands are bivalve chelating ligands that lead to their participation as ligand into complexes with a tetrahedral geometric shape for all metallic complexes under study. The research included a study evaluating the antioxidant activity of some selected metal complexes by studying the amount of radical scavenging of DPPH* compared to ascorbic acid as an antioxidant reference agent. The zinc complex showed higher activity than the nickel complex compared to standard ascorbic acid. The [Cu2(L1)Cl4] and [Co2(L1)Cl4] complexes were also tested as antibodies to inhibit the breast cancer cell line (MCF-7) and compared with the normal cell line (HdFn), where the copper complex showed the ability to inhibit the cancerous cell line compared with the cobalt complex. The molecular binding of ligands (L3) and (L4) was also studied, and their possibility of using them as drugs in the treatment of some diseases, where the ligand L3 showed better association with the active site of the enzyme than the ligand L4, and is expected to highest antimicrobial effect. Finally, the biological effect of the prepared ligands and some of their complexes on the growth of two types of bacteria, Escherichia coli and Staphylococcus aureus, was studied using DMSO solvent, where the complexes showed greater activity than the ligands against the selected types of bacteria.
Complexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
Hippuric acid and 3-amino phenol were used to make the 4-(2-Amino-4-hydroxy-phenylazo)-benzoylamino-acetic acid diazonium salt, a new Azo molecule that is a derivative of the (4-Amino-benzoylamino)-acetic acid diazonium salt. We found out what the ligand's chemical structures were by using information from 1HNMR, FTIR, CHN, UV-Vis, LC-mass spectroscopy, and thermal analyses. To make metal complexes of the azo ligand with Co(II), Cu(II), Ru(III), and Rh(III) ions, extra amounts of each azo ligand were mixed with metal chloride salts in a 2:2 mole ratio. The stereochemical structures and geometries of the metal complexes that were studied were guessed based on the fact that the ligand exhibited tetradentate bonding behavior when combined w
... Show MoreSynthesis of a new ligand, namely [bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) hydrogen borate] (BIB), utilizing the reaction of metronidazole with boric acid in a (2:1) mole ratio The metal complexes were synthesized utilizing the reaction of (NiCl2.6H2O and CuCl2 .2H2O) with (BIB) ligand in a 2:1 (L:M) mole ratio. All synthesized compounds were characterized utilizing spectroscopic techniques such as infrared (FTIR), nuclear magnetic resonance of protons(1H NMR), ultra violet and visible radiation (UV-Vis), thermal analysis (TG), atomic absorption (A.A.S.), micro elemental analysis (C.H.N.S.), melting point (m.p.), magnetic susceptibility, molar conductivity, and chlor
... Show MoreThis paper presents the synthesis and study of some new mixed-liagnd complexes containing nicotinamide(C6H7N2O) symbolized (NA) and phenylalanine (C9H11NO2)symbolized (pheH)] with some metal ions. The resulting products were found to be solid crystalline complexes which have been characterized by :Melting points, Solubility, Molar conductivity. determination the percentage of the metal in the complexes by flame(AAS), magnetic susceptipibility, Spectroscopic Method [FT-IR and UV-Vis]. The proposed structure of the complexes using program , chem office 3D(2006) . The general formula have been given for the prepared complexes :[M(NA)2(phe)]cl M(II): Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) & Hg(II) . NA = Nicotinamide= C6H7N2O Phe -
... Show MoreThis paper presents the synthesis and study of some new mixed-ligand complexes containing nicotinamide(C6H7N2O) symbolized (NA) and phenylalanine (C9H11NO2)symbolized (pheH)] with some metal ions. The resulting products were found to be solid crystalline complexes which have been characterized by :Melting points, Solubility, Molar conductivity. determination the percentage of the metal in the complexes by flame(AAS), magnetic susceptipibility, Spectroscopic Method [FT-IR and UV-Vis]. The proposed structure of the complexes using program , chem office 3D(2006) . The general formula have been given for the prepared complexes : [M(NA)2(phe)]cl M(II): Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) & Hg(II)). NA = Nicotinamide= C6
... Show MoreThe new Schiff base, namely (2-Amino-phenylimino)-acetic acid (L) was prepared
from condensation of glyoxylic acid with o-phenylene diamine. The structure (L) was
characterized by, IR,
1
H,
13
C-NMR and CHN analysis. Metal complexes of the ligand (L)
were synthesized and their structures were characterized by Atomic absorption, IR and UV-Visible spectra, molar conductivity, magnetic moment and molar ratio determination (Co
+2
,
Cd
+2
) complexes. All complexes showed octahedral geometries.
four coordinated complexes for divalent metal ions : Mn, Fe, Co, Ni, Cu and Cd have been synthesized using bidentate Schiff base ligand type (NN)formed by the condensation of o-phenylenediamine , p- methylbenzadehyde and furfural in methanol. The ligand was reacted with divalent metal chloride forming complexes of the types :[M(L)Cl2] where : MII=Mn, Fe, Ni, Cu, and Cd . These new compounds were characterized by elemental analysis, spectroscopic methods (FT-IR, U.V-Vis, 1HNMR (for ligand only and atomic absorption) , magnetic susceptibility, chloride content along with conductivity measurement. These studies revealed that the geometry for all complexes about central metal ion is tetrahedral.
Abstract: New copper(II) complexes with mixed ligand benziloxime (BOxH) and furfural-dehydeazine (FA) using classical (with and without solvent) and microwave heating methods have been prepared. The resulting complexes have been characterized using physico-chemical techniques. The study suggested that the ligands formed neutral complexes had general formulas [Cu(FA)(BOXH)(Ac)2] and [Cu(FA)(BOX)(OH)] in neutral (or acidic) and basic medium, respectively. Accordingly, hexa-coordinated mono-nuclear complexes have been investigated by this study and having distorted octahedral geometry. The effect of laser have been studied on solid ligands and solid complexes, no effect have been observed on most compounds through the results of melting poin
... Show MoreNitrogen-comprising heterocyclic compounds and their derivatives have empirically been invaluable as therapeutic agents. Fundamentally, 4-chloro-6-nitro-2-amino-1,3-benzothiazole 1 was synthesized via bromination of 2-chloro-4-nitro aniline with ammonium thiocyanate. This new heterocyclic haloorganoamino-1,3-benzothiazole derivative, was a starting material, which condensed and tethered with three different aromatic aldehyde pendant arm in presence of ethanol and glacial acetic acid isolating an interesting sequence of tridentate Schiff bases 2-4. These compounds were used for complexation reactions in 1:1 (metal: ligand) stoichiometry to obtain heteroleptic Al(III), Ni (II) and K(I) benzothiazole chelat
... Show More