The purpose of my thesis is to prepare four new ligands (L1-L4) that have been used to prepare a series of metal complexes by reacting them with metal ions: M=(Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) Where succinyl chloride was used as a raw material for the preparation of bi-dented ligands (L1-L4) by reacting it with potassium thiocyanate as a first step and then reacting with (2-aminobenzothiazole, Benzylamine, 4-aminoantipyrine, Sulfamethoxazole) respectively as a second step with the use of dry acetone as a solvent, the chemical formula of the four ligands prepared in succession: N1,N4-bis(benzo[d]thiazol-2-ylcarbamothioyl)succinamide (L1) N1,N4-bis(benzylcarbamothioyl)succinamide (L2) N1,N4-bis((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) carbamothioyl)succinamide (L3) N1,N4-bis((4-(N-(5-methylisoxazol-3-yl)sulfamoyl) phenyl) carbamo thioyl) succinamide (L4) The new ligands were identified using spectroscopic measurements that included (FT-IR spectra, UV-Vis spectra, and nuclear magnetic resonance (1H, 13CNMR) spectra, mass spectra, elemental analysis (C.H.N.S), and thermal analysis (TGA&DSC), as the results of the measurements proved to be identical to the proposed molecular formula for these ligands. A series of metal complexes for ligands was also prepared, which included seven complexes for each ligand, by adding each of the metal ions to the four ligands prepared in succession to produce the following molecular formulas: - [M2(L)Cl4] , L= L1, L2, L3, L4 (M= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II)) The prepared complexes were diagnosed by several techniques, including the study of the infrared spectra of the prepared complexes, and when comparing those spectra with the spectra of each of the four ligands prepared in the free form, these gave clear changes, including the emergence of a new band within the fingerprint area. It was not originally present in the spectra of ligands in their free form, and this is due to the occurrence of coordination between the metal ions under study and the donor atoms, which are the oxygen atom of the (C=O) group, and the sulfur atom of the (C=S) group in the ligands. (L1-L4), while other distinct bands were obtained with clear changes in shape, intensity, and location, and this is an indication of the occurrence of a coordination process between the metal ions under study and the four prepared ligands. The percentage of metal ions in the prepared complexes was determined by flame atomic absorption spectrometry, where it was shown from the careful analysis of the elements the great agreement between the percentages calculated theoretically and obtained practically. The magnetic sensitivity results showed that some of the prepared metallic complexes have paramagnetic properties. The measurements of the molar conductivity of the prepared complexes dissolved in DMSO at a concentration of 1×10-3 M and at the laboratory temperature showed that they are of a non-electrolytic nature. The prepared complexes were also studied through solubility, melting point, and ultraviolet-visible techniques, and through the data of all the aforementioned techniques, structural formulas were proposed for the prepared complexes, through which it was found that the prepared ligands are bivalve chelating ligands that lead to their participation as ligand into complexes with a tetrahedral geometric shape for all metallic complexes under study. The research included a study evaluating the antioxidant activity of some selected metal complexes by studying the amount of radical scavenging of DPPH* compared to ascorbic acid as an antioxidant reference agent. The zinc complex showed higher activity than the nickel complex compared to standard ascorbic acid. The [Cu2(L1)Cl4] and [Co2(L1)Cl4] complexes were also tested as antibodies to inhibit the breast cancer cell line (MCF-7) and compared with the normal cell line (HdFn), where the copper complex showed the ability to inhibit the cancerous cell line compared with the cobalt complex. The molecular binding of ligands (L3) and (L4) was also studied, and their possibility of using them as drugs in the treatment of some diseases, where the ligand L3 showed better association with the active site of the enzyme than the ligand L4, and is expected to highest antimicrobial effect. Finally, the biological effect of the prepared ligands and some of their complexes on the growth of two types of bacteria, Escherichia coli and Staphylococcus aureus, was studied using DMSO solvent, where the complexes showed greater activity than the ligands against the selected types of bacteria.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
Diazotization reaction between 1-(2,4,6-Trihydroxy-phenyl)-ethanone and diazonium salts was carried out resulting in ligand 4-(3-Acetyl-2,4,6-trihydroxy-phenylazo)-N-(5-methyl-isoxazol-3-yl)-benzenesulfonamide, this in turn reacted with the next metal ions (V4+ , Cr3+ , Mn2+ and Cu2+) forming stable complexes with unique geometries such as (Octahedral for both Cr3+ , Mn2+ and Cu2+ ,squar pyramidal for V4+). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and and the coordination with metal ion through it. Pyrolysis (TGA & DSC) studies proved the coordination of water residues with me
... Show MoreAzo-ligand-(HL)([4-((2-hydroxyquinolin-3-yl)diazenyl)-N-(5-methylisoxazol-3-yl)benzenesulfonamide] ) , (2- hydroxy quinolin derivative),reacts with the next metal ions (Cr (III), Fe (III),Co (II) and Cu(II)) forming stable complexes with unique geometries such as(tetrahedral for bothCo (II) and Cu (II), octahedral for both Cr (III) and Fe (III)). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, Fourier transfer proved the involvement of coordinated water molecule in all complexes besides the pyrolysis (TGA & DSC) studies proved the coordination of water residues with metal ions inside the coordination sphere as well as chlorine ato
... Show MoreCo+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show MoreThe [2-hydroxy-1, 2-diphynel-ethanone oxime] was reacted with 1, 2-dichloroethan to give the new ligand [H2L]. this ligand was reacted with some metal ions (Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) in methanol as a solvent to give a series of new (1: 1) complexes of the general formula [M (HL)] Cl,(where: M= Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) are isolated All compounds have been characterized by spectroscopic methods [IR, UV-Vis] atomic absorption. Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure
The [2-hydroxy -1,2-diphynel-ethanone oxime] was reacted with 1,2- dichloroethan to give the new ligand [H2L].this ligand was reacted with some metal ions (Co(II),Ni(II),Cu(II),Zn(II) and Cd(II) in methanol as a solvent to give a series of new (1:1)complexes of the general formula [ M(HL)]Cl ,( where : M= Co(II),Ni(II),Cu(II),Zn(II) and Cd(II)) are isolated All compounds have been characterized by spectroscopic methods [ I.R , U.V -Vis ] atomic absorption . Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure.