A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreInvestment Bases directly and closely to an environment characterized by political, social and economic stability, and through a range of policies and institutions and economic laws that affect investor confidence and convince him directing investments to country without the other, where inter conditions and circumstances affecting the trends of capital and settle in, and political situation of the country and what is characterized of stability or disorder as well as economic conditions that are affected by what is distinguishes the country from geographic and demographic characteristics are reflected on availability of production elements and country's infrastructure.
... Show MoreThis work presents plants recognition system with rotation invariant based on plant leaf. Wavelet energy features are extracted for sub-images (blocks) beside three of leaf shape features: [area, perimeter, circularity ratio]. (8) species of leaves are used in different size and color, (15) samples for each leaf are used. Leaves images are rotated at angles: 90˚, 180˚, 270˚(counterclockwise,clockwise). Euclidean distance is used, the recognition rate was 98.2% with/without rotation.
Iraq is highly dependent on international markets to provide food for its residents. As imported food prices are highly dependent on crude oil prices in global markets, any shock in oil prices will have an impact on food consumption in the country. As a result, it is essential to study the demand for imported food at every time period. To the best of our knowledge as researchers, as not even a single study is available in the literature, this paper is considered the first to study the demand for imported food groups in Iraq. Therefore, the main objective of this research is to estimate demand elasticities for several imported food categories in Iraq. This study uses an Almost Ideal Demand System model to analyze the demand for imported f
... Show MoreThe conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast co
... Show MoreThis paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreIn this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show More