Recently, all over the world mechanism of cloud computing is widely acceptable and used by most of the enterprise businesses in order increase their productivity. However there are still some concerns about the security provided by the cloud environment are raises. Thus in this our research project, we are discussing over the cloud computing paradigm evolvement for the large business applications like CRM as well as introducing the new framework for the secure cloud computing using the method of IT auditing. In this case our approach is basically directed towards the establishment of the cloud computing framework for the CRM applications with the use of checklists by following the data flow of the CRM application and its lifecycle. Those checklists are prepared on the basis of models of cloud computing such as deployment models and services models. With this project our main concern is to present the cloud computing implications through the large database enterprise CRM application and achieving the desired level of security with design and implementation of IT auditing technique. We claim that with this our proposed methods for the CRM applications, we will providing the security, regulations, compliance of such cloud computing environments.
In multivariate survival analysis, estimating the multivariate distribution functions and then measuring the association between survival times are of great interest. Copula functions, such as Archimedean Copulas, are commonly used to estimate the unknown bivariate distributions based on known marginal functions. In this paper the feasibility of using the idea of local dependence to identify the most efficient copula model, which is used to construct a bivariate Weibull distribution for bivariate Survival times, among some Archimedean copulas is explored. Furthermore, to evaluate the efficiency of the proposed procedure, a simulation study is implemented. It is shown that this approach is useful for practical situations and applicable fo
... Show More
It has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems. The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and
... Show MoreIn this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.