Introduction: The present study was performed to evaluate the influence of a 1064 nm fiber laser on shear bond strength (SBS) at the interface of titanium and resin cement. Methods: Forty titanium discs of 6 mm × 3 mm (diameter and thickness respectively) were categorized into four groups (n=10): control group without any surface treatment and three groups treated with a fiber laser with 81 ns pulse duration, 30 kHz frequency, 10000 mm/s scanning speed, 0.05 mm spot size, and different average power values (3, 5 and 7 W) depending on the tested group. Titanium disc characterization was performed by the scanning electron microscope (SEM) and surface roughness tester. Phase analysis was achieved using an X-ray diffractometer (XRD). Following these tests, resin cement application to titanium discs was performed. SBS values were determined by the universal testing machine. After debonding, the surface of titanium discs was examined by the stereomicroscope for the determination of failure modes. Data analysis was performed using analysis of variance (ANOVA) and Tukey HSD tests (α=0.05). Results: A higher surface roughness value was observed in the 7 W group followed by the 5 W and 3 W groups, and the lowest surface roughness was in the control group. Additionally, the lowest SBS value was obtained from the control group and the highest SBS value was obtained from the 7 W group followed by the 5 W and 3 W groups. Conclusion: SBS between titanium abutment and resin cement can be significantly enhanced by using a fiber laser as a surface treatment considering tested laser parameters; additionally, a positive association between surface roughness and SBS was noted in the experimental groups.
The photonconductor detectors CdSe:Cu was fabricated as a thin film of (1 μm) in thickness using vacuum evaporation technique. doping with copper was made using vacuum annealing at 350oC under argon atmosphere . The spectral responsivity and spectral detectivity of the detector were determined as a function of incident wavelength on the sample. A remarkable improvement in performance was absorbed for the specimen, which doping with (1-5 wt%) Cu.
The spectral response increases with increasing of wavelength for incident radiation to maximum value, after that , it reduced sharply . There is a shifting for peak responsivity indirect of higher wavelength. The detectivity was increased with doping but its decreased as the concentration in
Self-compacted concrete (SCC) is a highly flowable concrete, with no segregation which can be spread into place by filling the structures framework and permeate the reinforcement without any compaction or mechanical consolidation ACI 237R-14. One of the most important problems faced by concrete industry in Iraq and Gulf Arab land is deterioration due to internal sulfate attack (ISA) that causes damage of concrete and consequently reduces its compressive strength, increases expansion and may lead to its cracking and destruction. The experimental program was focused to study two ordinary Portland cements with different chemical composition with (5, 10 and 15) % percentage of high reactivity metakaoline (HRM)
... Show MoreCobalt substituted nickel copper ferrite samples with general formula Ni0.95-xCoxCu0.05Fe2O4, where (x= 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by solid-state reactions method at 1373 K for 4h. The samples prepared were examined by X-ray diffraction (XRD(, atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR) and Vickers hardness. X-ray diffraction patterns confirm the formation of a single phase of cubic spinel structure in all the prepared samples . XRD analysis showed that the increase in the cobalt concentration causes an increase in the lattice constant, bulk density (ρm) and the x-ray density (ρx), whereas porosity (p) and crystallite size (D) decrease. The Topography of the surface observed
... Show MoreBackground: Denture lining materials are widely used in prosthodontic treatment and management of traumatized oral mucosa. A contaminated prosthesis can provide a source of cross-contamination between patients and dental personnel as well as a cause for denture stomatitis. Therefore, denture disinfection has been recommended as an essential procedure for maintenance of a healthy oral mucosa. This study investigated the effect of SOLO disinfectant solution on some properties of different denture lining materials. Materials and methods: Three different solutions were used in this study; SOLO disinfectant solution, sodium hypochlorite solution, and water on three types of acrylic denture lining materials; hot cure, cold cure, and soft acrylic
... Show MoreThis work aimed to use effective, low-cost, available, and natural adsorbents like eggshells for removal of hazardous organic dye result from widely number of industries and study the influence of different eggshell particle size (75, 150) Mm. The adsorbent was characterized by SEM, EDX, BET and FTIR . The initial pH of dye solutions varying from 4 to 10 , the initial concentrations of methyl violet (MV) 2B range (20-80) mg/L, dosage range (0.5-10) g, contact time (30-180) min, and particles size of the adsorbent (75, 150) Mm were selected to be studied. Two adsorption isotherms models have been used to fit the experimental data. Langmuir and Freunlich models were found to more represent the experiments with high
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreZnIn2(Se1-xTex)4 (ZIST) chalcopyrite semiconductor thin films at various contents (x = 0.0, 0.2, and 0.4) are deposited on glass and p type silicon (111) substrate to produce heterojunction solar cell by using the thermal evaporation technique at RT where the thickness of 500 nm with a vacuum of 1×10-5 mbar and a deposited rates of 5.1 nm/s. This study focuses on how differing x content effect on the factors affecting the solar cell characteristics of ZIST thin film and n-ZIST/p-Si heterojunction. X-ray diffraction XRD investigation shows that this structure of ZIST film is polycrystalline and tetragonal, with (112) preferred orientation at 2θ ≈ 27.01. Moreover, atomic force microscopy AFM is studying the external morphology of
... Show More