There are two main categories of force control schemes: hybrid position-force control and impedance control. However, the former does not take into account the dynamic interaction between the robot’s end effector and the environment. In contrast, impedance control includes regulation and stabilization of robot motion by creating a mathematical relationship between the interaction forces and the reference trajectories. It involves an energetic pair of a flow and an effort, instead of controlling a single position or a force. A mass-spring-damper impedance filter is generally used for safe interaction purposes. Tuning the parameters of the impedance filter is important and, if an unsuitable strategy is used, this can lead to unstable contact. Humans, however, have exceptionally effective control systems with advanced biological actuators. An individual can manipulate muscle stiffness to comply with the interaction forces. Accordingly, the parameters of the impedance filter should be time varying rather than value constant in order to match human behavior during interaction tasks. Therefore, this paper presents an overview of impedance control strategies including standard and extended control schemes. Standard controllers cover impedance and admittance architectures. Extended control schemes include admittance control with force tracking, variable impedance control, and impedance control of flexible joints. The categories of impedance control and their features and limitations are well introduced. Attention is paid to variable impedance control while considering the possible control schemes, the performance, stability, and the integration of constant compliant elements with the host robot.
In this research, a variable stiffness actuator is proposed to enhance the damping of the mechanical vibrating system. The frequency response analysis of the vibrating system is dependant in order to analyze and synthesis this semi-active damping, where the suggested process is using active filter to estimate the present frequency of the vibration system, and this will limit the value of the stiffness of the vibrated system. Two active filter s are needed, low-pass-filter (LPF) to choose the higher stiffness of the actuator at small frequencies as well as more damping and high-pass-filter (HPF) to choose the lower stiffness of the actuator at high frequencies as well as more damping, and so
... Show MoreBackground: Chronic otitis media (COM) of mucosal or squamous type is a common problem in otolaryngology practice, the active form of COM is characterized by discharge of pus and is treated by antibiotics to start with, the appropriate antibiotic should be prescribed to avoid antibiotic abuse and guarantee good outcome. Objectives:The objective of this study is to identify the causative organisms of active chronic active otitis media both (mucosal, squamous) type and test their sensitivity to various anti- microbial agents &compare with abroad studies.Methods:A prospective study was done on eighty patients, different ages and sexes were taken and carful history and examination was done, examination under microscope was done with carf
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreCulture heritage reflects nation’s legacy and therefore should be protected from damage in order to pass it to future generations. Recently, such protection can be applied by 3D digitization techniques such as conservation, restoration, documentation, etc. The 3D digitalization of heritage assets has encountered numerous focus in the last two decades due to the development in data capturing techniques and technological advancement in 3D remote sensing (RS) approaches such as photogrammetry and laser scanning. However, the abundance of 3D information resources and spatial data modelling and analysis methods have urged stakeholders to adopt intelligent 3D dat
... Show MoreUsing orbit- motion limited theory, as the exact theory in calculating the ion and electron current in dusty plasma, the variations of charge number on a dust grain in Ar-plasma are studied by changing various charging parameters. Most of dependences of charge number on plasma parameters in this paper take into account the close packed effect.
Background: This study was conducted to evaluate the hard palate bone density and thickness during 3rd and 4th decades and their relationships with body mass index (BMI) and compositions, to allow more accurate mini-implant placement. Materials and method: Computed tomographic (CT) images were obtained for 60 patients (30 males and 30 females) with age range 20-39 years. The hard palate bone density and thickness were measured at 20 sites at the intersection of five anterioposterior and four mediolateral reference lines with 6 and 3 mm intervals from incisive foramen and mid-palatal suture respectively. Diagnostic scale operates according to the bioelectric impedance analysis principle was used to measure body weight; percentages of body fa
... Show MoreActive Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of applications. Their exclusive appealing features make them suitable for solving traditional rotor-bearing problems using novel design approaches for rotating machinery. In this paper, a linearized uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on Lyapunov function for the electromechanical system. The controller requires measurements of the rotor displacements and their derivatives. Since the control law is discontinuous, the proposed controller can achieve a finite time regulation but with the drawback of the chattering problem. To reduce the effect of this problem, the gain of the uni
... Show MoreApplications of remote sensing are important in improving potato production through the broader adoption of precision agriculture. This technology could be useful in decreasing the potential contamination of soil and water due to the over-fertilization of agriculture crops. The objective of this study was to assess the utility of active sensors (Crop Circle™, Holland Scientific, Inc., Lincoln, NE, USA and GreenSeeker™, Trimble Navigation Limited, Sunnyvale, CA, USA) and passive sensors (multispectral imaging with Unmanned Arial Vehicles (UAVs)) to predict total potato yield and phosphorus (P) uptake. The experimental design was a randomized complete block with four replications and six P treatments, ranging from 0 to 280 kg P ha−1, as
... Show More