Preferred Language
Articles
/
IhYTGocBVTCNdQwCMjdB
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Revista Electronica De Veterinaria
The Molecular Identification of Pathogenic E. coli Isolated from Raw Cow Milk and Assessment Their Anti-susceptibility to Medical Plants at Al-Najaf city/ Iraq
...Show More Authors

Background: Toxin-producing Shiga Escherichia coli has been identified as a new foodborne pathogen that poses a significant health risk to humans. Shiga toxin-producing Escherichia coli can be found in raw cow milk and its derivatives. A small number of Escherichia coli strains that produce shiga toxin are pathogenic. Aim of study: The study aimed to see if there were any virulence genes in 50 milk samples that were typical of Entero-haemorrhagic E. coli and evaluate the Myrtus communis effects on these bacteria. Materials and Method: Milk samples were used to isolate E. coli bacteria (n= 27), biochemically analyzed, and genetically screened for virulence genes using a multiplex (PCR). The hydro-alcoholic extraction of Myrtus communis leave

... Show More
View Publication Preview PDF
Scopus (2)
Scopus
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
Effects of Castor Oil Nanoemulsion Extracted by Hexane on the Fourth Larval stage of Culex quinquefsciatus from Al Hawizeh Marsh/Iraq, and Non- Targeted Organism
...Show More Authors

           The current study aims to show the importance of plant products as mosquitocides against Culex quinquefasciatus. Castor oil Nanoemulsions were subedit in various ratios including castor oil, ethanol, tween 80, and deionized water by using ultrasonication. Thermodynamic, centrifugation, PH, assay which improved that the formula  of 10 ml  of castor  oil, ethanol  5ml, tween 80 (14 ml) and deionized water 71ml was more stable than other formulas. The stable formula of castor oil nanoemulsion was characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Nanoemulsion droplets were spherical in shape and were found to have a Z-average diameter of 87.4nm. A concentration of ca

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 04 2016
Journal Name
European Journal Of Oral Sciences
Experimental polyethylene-hydroxyapatite carrier-based endodontic system: an in vitro study on dynamic thermomechanical properties, sealing ability, and measurements of micro-computed tomography voids
...Show More Authors

The dynamic thermomechanical properties, sealing ability, and voids formation of an experimental obturation hydroxyapatite-reinforced polyethylene (HA/PE) composite/carrier system were investigated and compared with those of a commercial system [GuttaCore (GC)]. The HA/PE system was specifically designed using a melt-extrusion process. The viscoelastic properties of HA/PE were determined using a dynamic thermomechanical analyser. Human single-rooted teeth were endodontically instrumented and obturated using HA/PE or GC systems, and then sealing ability was assessed using a fluid filtration system. In addition, micro-computed tomography (μCT) was used to quantify apparent voids within the root-canal space. The data were statistically analys

... Show More
View Publication
Crossref (7)
Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
Self-organized learning strategies and self-competence among talented students
...Show More Authors

Investigating the strength and the relationship between the Self-organized learning strategies and self-competence among talented students was the aim of this study. To do this, the researcher employed the correlation descriptive approach, whereby a sample of (120) male and female student were selected from various Iraqi cities for the academic year 2015-2016.  the researcher setup two scales based on the previous studies: one to measure  the Self-organized learning strategies which consist of (47) item and the other to measure the self-competence that composed of (50) item. Both of these scales were applied on the targeted sample to collect the required data

View Publication Preview PDF
Publication Date
Tue May 07 2019
Journal Name
Acm Journal On Emerging Technologies In Computing Systems
Neuromemrisitive Architecture of HTM with On-Device Learning and Neurogenesis
...Show More Authors

Hierarchical temporal memory (HTM) is a biomimetic sequence memory algorithm that holds promise for invariant representations of spatial and spatio-temporal inputs. This article presents a comprehensive neuromemristive crossbar architecture for the spatial pooler (SP) and the sparse distributed representation classifier, which are fundamental to the algorithm. There are several unique features in the proposed architecture that tightly link with the HTM algorithm. A memristor that is suitable for emulating the HTM synapses is identified and a new Z-window function is proposed. The architecture exploits the concept of synthetic synapses to enable potential synapses in the HTM. The crossbar for the SP avoids dark spots caused by unutil

... Show More
View Publication
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Sat Nov 02 2019
Journal Name
Advances In Intelligent Systems And Computing
Modified Opposition Based Learning to Improve Harmony Search Variants Exploration
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref