Preferred Language
Articles
/
IhYHH4oBVTCNdQwCD5F0
Double Stage Shrinkage Estimators of Two Parameters Generalized Rayleigh Distribution
...Show More Authors

Publication Date
Mon Jul 01 2024
Journal Name
Alexandria Engineering Journal
Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation
...Show More Authors

The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between Methods of Laplace Estimators and the Robust Huber for Estimate parameters logistic regression model
...Show More Authors

The logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .                                                

The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result.    &nbs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some methods for estimating Poisson-Weibull distribution parameters
...Show More Authors

In this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
TESTING THE UNIFORMITY OF SPRAY DISTRIBUTION UNDER DIFFERENT APPLICATION PARAMETERS
...Show More Authors

View Publication
Crossref (4)
Clarivate Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Valuable Metals From Spent Hydrodesulfurization Catalyst By Two Stage Leaching Method
...Show More Authors

Spent hydrodesulfurization (Co-Mo/γ-Al2O3) catalyst generally contains valuable metals like molybdenum (Mo), cobalt (Co), aluminium (Al) on a supporting material, such as γ-Al2O3. In the present study, a two stages alkali/acid leaching process was conducted to study leaching of cobalt, molybdenum and aluminium from Co-Mo/γ-Al2O3 catalyst. The acid leaching of spent catalyst, previously treated by alkali solution to remove molybdenum, yielded a solution rich in cobalt and aluminium.

View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
2019 First International Conference Of Computer And Applied Sciences (cas)
A Comparison for Some of the estimation methods of the Parallel Stress-Strength model In the case of Inverse Rayleigh Distribution
...Show More Authors

View Publication
Scopus (10)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
...Show More Authors

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Economics And Administrative Sciences
Properties of Kumaraswamy binary Distribution and compare methods of estimating parameters
...Show More Authors

The recent development in statistics has made statistical distributions the focus of researchers in the process of compensating for some distribution parameters with fixed values and obtaining a new distribution, in this study, the distribution of Kumaraswamy was studied from the constant distributions of the two parameters. The characteristics of the distribution were discussed through the presentation of the probability density function (p.d.f), the cumulative distribution function (c.d.f.), the ratio of r, the reliability function and the hazard function. The parameters of the Kumaraswamy distribution were estimated using MLE, ME, LSEE by using the simulation method for different sampling sizes and using preli

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposal of Using Principle of Maximizing Entropy of Generalized Gamma Distribution to Estimate the Survival probabilities of the
...Show More Authors

Abstract

In this research we been estimated the survival function for data suffer from the disturbances and confusion of  Iraq Household Socio-Economic Survey: IHSES II 2012 , to data from a five-year age groups follow the distribution of the Generalized Gamma: GG. It had been used two methods for the purposes of estimating and fitting which is the way the Principle of Maximizing Entropy: POME, and method of booting to nonparametric smoothing function for Kernel, to overcome the mathematical problems plaguing integrals contained in this distribution in particular of the integration of the incomplete gamma function, along with the use of traditional way in which is the Maximum Likelihood: ML. Where the comparison on t

... Show More
View Publication Preview PDF
Crossref