Purpose: To compare the central corneal thickness (CCT),minimum corneal thickness (MCT) and corneal power measured using theScheimpflug-Placido device and optical coherence tomography (OCT) in healthy eyes. Study Design: Descriptive observational. Place and Duration of Study: Al-Kindy college of medicine/university of Baghdad, from June 2021 to April 2022. Methods: A total of 200 eyes of 200 individuals were enrolled in this study. CCT and MCT measurements were carried out using spectral-domain optical coherence tomography (Optovue) and a Scheimpflug-Placido topographer (Sirius).The agreement between the two approaches was assessed using Bland-Altman analysis in this study. Results: Mean age was 28.54 ± 6.6 years, mean spherical equivalent of refraction was -3.57 ± 3.35 D. Mean CCT by Optovue, and Sirius were534.13 ± 27.88 μm, and 540.2 ± 27.85μm, respectively.Mean CCT differences between them were -6.070± 6.593 μm, (p < 0.05). Minimum thickness by Optovue was 526.79 ± 27.81, and by Sirius was 537.44 ± 27.56, mean difference between the two devices was 10.66 ± 6.89,p= 0.00. The net power by OCT was 43.44 ± 1.456, mean K by Sirius was 43.597 ± 1.408, with p=0.000. Maximum level of agreement between the two devices is -18.99 to 6.85 for CCT, is widest for minimum thickness -24.166 to 2.85 and narrowest for differences between net corneal power by OCT and mean K By Sirius is -0.87 to 1.18. Conclusion: In clinical practice, the two devices cannot be used interchangeably. CCT and keratometry should be evaluated and followed up using the same device.
AlO-doped ZnO nanocrystalline thin films from with nano crystallite size in the range (19-15 nm) were fabricated by pulsed laser deposition technique. The reduction of crystallite size by increasing of doping ratio shift the bandgap to IR region the optical band gap decreases in a consistent manner, from 3.21to 2.1 eV by increasing AlO doping ratio from 0 to 7wt% but then returns to grow up to 3.21 eV by a further increase the doping ratio. The bandgap increment obtained for 9% AlO dopant concentration can be clarified in terms of the Burstein–Moss effect whereas the aluminum donor atom increased the carrier's concentration which in turn shifts the Fermi level and widened the bandgap (blue-shift). The engineering of the bandgap by low
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MoreIn this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z
... Show MoreA nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreUndoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreIn the present work we prepared heterojunction not homogenous CdS/:In/Cu2S) by spray and displacement methods on glass substrate , CdS:In films prepared by different impurities constration. Cu2S prepared by chemical displacement method to improve the junction properties , structural and optical properties of the deposited films was achieved . The study shows that the film polycrystalline by XRD result for all film and the energy gap was direct to 2.38 eV with no effect on this value by impurities at this constration .