One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of 5.5 kPa and improved by several patterns of stone columns (single, two linear, triangular, square, and quadrilateral). The stone column has a length of 180 mm and a diameter of 30 mm. The material of the stone column is poorly graded sand has an angle of internal friction (48.5°) at a relative density of 65%. The results indicated a significant increase in the ultimate bearing capacity of soft soil when treated with floating stone columns despite the small ratio of area replacement and reducing the excess porewater pressure and settlement. Also, the ultimate bearing capacity of soil calculated from experimental work is compared with the corresponding values obtained from the proposed equations in the previous studies to evaluate the validity of using such equations.
The gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content. Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by using a mixture
... Show MoreIn this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem
... Show MoreAbstract
There has been a heated controversy over the role the financial policy plays and how sufficient it is in affording the financial burden. This burden is known as the operational current expenses which the governments of various countries mainly afford, despite the discrepancy in the government’s economic policy. After the deterioration and deficit in the state budget in all countries nowadays, it was necessary to find an appropri
... Show MoreFrictional heat is generated when the clutch starts to engag. As a result of this operation the surface temperature is increased rapidly due to the difference in speed between the driving and driven parts. The influence of the thickness of frictional facing on the distribution of the contact pressure of the multi-disc clutches has been investigated using a numerical approach (the finite element method). The analysis of contact problem has been carried out for a multiple disc dry clutch (piston, clutch discs, separators and pressure plate). The results present the distribution of the contact pressure on all tShe surfaces of friction discs that existed in the friction clutch system. Axisymmetric finite element models have been developed to ac
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
Rainfall in Nigeria is highly dynamic and variable on a temporal and spatial scale. This has taken a more pronounced dimension due to climate change. In this study, Standard Precipitation Index (SPI) and Mann-Kendall test statistical tools were employed to analyze rainfall trends and patterns in Gombe metropolis between 1990 and 2020 and the ARIMA model was used for making the forecast for ten (10) years. Daily rainfall data of 31 years obtained from Nigerian Meteorological Agency, (NIMET) was used for the study. The daily rainfall data was subjected to several analyses. Standard precipitation index showed that alternation of wet and dry period conditions had been witnessed in the study area. The result obtained showed that there is an u
... Show MoreMolecular interactions between 2-isopropenylnaphthalene-methacrylic acid (IPNMA) block copolymer( as a model for water- soluble polymer) and methanol at several temperatures were studied using fluorescence techniques , Fluorescence spectrum for (IPNMA) exhibits two emission bands at around 342 nm and 387 nm corresponding to the monomer and the excimer bands , respectively .The fluorescence spectra of dilute solution of (IPNMA) in methanol were recorded in temperature range of 8- 45?C . Plot of the excimer to monomer intensity ratio Ie/Im versus temperature was obtained, which shows double lines with positive slopes crossing at 25?C , the increasing of slope value above this temperature is s
... Show MoreThe study area soils suffer from several problems appear as tkhesvat and cracks in the roads and waterlogging which reduces the susceptibility of soil to withstand pressure, this study was conducted on the soil of the Karkh district based on field study that included (6) samples of soil physical analyses contain different ratios of (mud, sand, silt) as percentages (52%, 45%, 3 #) respectively, and liquidity limit rate (39%) Stroke rate plasticity was (20.6%) The rate coefficient of plasticity total (19.2%)0