Changing oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettability shift on oil-wet and mixed-wet calcite substrates. We found that silica nanoparticles have an ability to alter the wettability of such calcite surfaces. Nanoparticle concentration and brine salinity had a significant effect on the wettability alteration efficiency, and an optimum salinity was identified, analogous to that one found for surfactant formulations. Mechanistically, most nanoparticles irreversibly adhered to the oil-wet calcite surface (as substantiated by SEM–EDS and AFM measurements). We conclude that such nanofluid formulations can be very effective as enhanced hydrocarbon recovery agents and can potentially be used for improving the efficiency of CO2 geo-storage.
The ability of pulverized walnut-shell to remove oil from aqueous solutions has been studied. It involves two-phase process which consists of using walnut-shell as a filtering bed for the accumulation and adsorption of oil onto its surface. Up to 96% oil removal from synthetic wastewater samples was achieved while tests results showed that 75% of oil can be removed from the actual wastewater discharged from Al- Duara refinery in the south of Baghdad.
Used vegetable oil was introduced to transesterfication reaction to produce Biodiesel fuel suitable for diesel engines. Method of production was consisted of filtration, transesterfication, separation and washing. Transesterfication was studied extensively with different operating conditions, temperature range (35-80oC), catalyst concentration (0.5-2 wt. % based on oil), mixing time (30-120 min.) with constant oil/methanol weight ratio 5:1 and mixing speed 1300 rpm. The concentration of Fatty acid methyl esters (Biodiesel) was determined for the transesterficated oil samples, besides of some important physical properties such as specific gravity, viscosity, pour point and flash point. The behavior of methyl esters production and the physica
... Show MoreIn this study, we fabricated nanofiltration membranes using the electrospinning technique, employing pure PAN and a mixed matrix of PAN/HPMC. The PAN nanofibrous membranes with a concentration of 13wt% were prepared and blended with different concentrations of HPMC in the solvent N, N-Dimethylformamide (DMF). We conducted a comprehensive analysis of these membranes' surface morphology, chemical composition, wettability, and porosity and compared the results. The findings indicated that the inclusion of HPMC in the PAN membranes led to a reduction in surface porosity and fiber size. The contact angle decreased, indicating increased surface hydrophilicity, which can enhance flux and reduce fouling tendencies. Subsequently, we evaluated the e
... Show MoreUsed vegetable oil was introduced to transesterfication reaction to produce Biodiesel fuel suitable for diesel engines. Method of production was consisted of filtration, transesterfication, separation and washing. Transesterfication was studied extensively with different operating conditions, temperature range (35-80oC), catalyst concentration (0.5-2 wt. % based on oil), mixing time (30-120 min.) with constant oil/methanol weight ratio 5:1 and mixing speed 1300 rpm. The concentration of Fatty acid methyl esters (Biodiesel) was determined for the transesterficated oil samples, besides of some important physical properties such as specific gravity, viscosity, pour point and flash point. The behavior of methyl esters production and the phys
... Show MoreFormation of emulsions during oil production is a costly problem, and decreased water content in emulsions leads to increases productivity and reduces the potential for pipeline corrosion and equipment used. The chemical demulsification process of crude oil emulsions is one of the methods used for reducing water content. The demulsifier presence causes the film layer between water droplets and the crude oil emulsion that to become unstable, leading to the accelerated of water coalescence. This research was performed to study the performance of a chemical demulsifier Chimec2439 (commercial) a blend of non-ionic oil-soluble surfactants. The crude oils used in these experiments were Basrah and Kirkuk Iraqi crude oil. These
... Show MoreThis paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be
... Show MoreBiodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
Abstract
The increasing of some traded Agricultural crops prices coincide with the increasing of crude oil prices in global market since the beginning of 21st century which indicate the possibility of short run and long run causality relation between the imported economic variables. The study aims to analysis the causality effects between some of Agricultural crops prices imported by Iraq and the prices of crude oil and Iraq dinar exchange rate in global markets for period (2004:1 -2016:4) theory for developing the adequate price and economic police for Iraqi economic sector. The results show the existence of short- run and long- run between the eco
... Show MoreThis work aims to analyze and study the bit performance in directional oil wells which leads to get experience about the drilled area by monitoring bit performance and analyzing its work. This study is concerned with Rumaila Oil Field by studying directional hole of one oil well with different angles of inclination. Drilling program was used in order to compare with used parameters (WOB, RPM and FR).in those holes. The effect of the drilling hydraulic system on the bit performance was studied as well as the hydraulic calculation can be done by using Excel program. This study suggests method which is used to predict the value of penetration rate by studying different formation type to choose the best drilling parameters t
... Show More