Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.
Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods
... Show MoreStatic reservoir modeling is the interacting and analysis of the geological data to visualize the reservoir framework by three-dimensional model and distribute the static reservoir properties. The Petrel E&P software used to incorporate the data. The interpreted log data and core report used in distribution of petrophysical properties of porosity, water saturation and permeability for Zubair reservoir in Luhais oil field.
The reservoir discretized to 274968 cells in increments of 300, 200 and 1 meter in the direction of X, Y, and Z respectively. The geostatistical approach used in the distribution of the properties of porosity and water saturation overall the reservoir units. The permeability has been calculated
... Show MoreIn general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreCarbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show MoreIn recent years the interest in fractured reservoirs has grown. The awareness has increased analysis of the role played by fractures in petroleum reservoir production and recovery. Since most Iraqi reservoirs are fractured carbonate rocks. Much effort was devoted to well modeling of fractured reservoirs and the impacts on production. However, turning that modeling into field development decisions goes through reservoir simulation. Therefore accurate modeling is required for more viable economic decision. Iraqi mature field being used as our case study. The key point for developing the mature field is approving the reservoir model that going to be used for future predictions. This can
Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreThe Carbonate-clastic succession in this study is represented by the Shuaiba and Nahr Umr Formations deposited during the Albian - Aptian Sequence. The present study includes petrography, microfacies analyses, and studying reservoir characterizations for 5 boreholes within West Qurna oil field in the study area. According to the type of study succession (clastic – Carbonate) there are two types of facies analyses:-Carbonate facies analysis, which showed five major microfacies were recognized in the succession of the Shuaiba Formation, bioclastic mudstones to wackstone, Orbitolina wackestone to packstone, Miliolids wackestone, Peloidal wackestone to packstone and mudstone to wackestone identified as an open shelf toward the deep basin.
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show More