Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.
Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia
... Show MoreIn this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreThe degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr
... Show MoreIA Ali, FK Emran, DF Salloom, Annals of the Romanian Society for Cell Biology, 2021
Background: Bacteriocin is a peptidic toxin has many advantages to bacteria in their ecological niche and has strong antibacterial activity. Objective: The aim of this study was to evaluation of bacteriocin using Streptococcus sanguinis isolated from human dental caries.
Subjects and Methods: Thirty five streptococcus isolates were diagnosed and tested for their production of bacteriocin, and then the optimal conditions for production of bacteriocin were determined. After that, the purification of bacteriocin was made partially by ammonium sulfate at 95% saturation levels, followed by and gel filtration chromatography
... Show MoreThis study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show More