Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreNanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching
... Show MoreIn this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
The current research aims to validate the Effect of technical innovation on human resources management ambidexterity through job embeddedness. The current research was done in Al-Etihad Food Industries Co. Ltd. And within the industrial environment, the research was designed according to the descriptive research. And to achieve the main goal of the research above, the researcher used the questionnaire as a key instrument to collect data through the views of a sample of managers, and employees at the senior, middle and executive management level. The research sample reached (107) individuals, the data were analysed using the statistical packages (SPSS v. 26) and ( SMART PLS v 3. 3. 8) the group of statistical
... Show MorePeriodontal diseases are inflammatory diseases, for which, scaling and root planning is the main approach. Diode laser therapy as an adjunct to non-surgical periodontal treatment has shown some beneficial effects.
Aim: The objective of this single randomized controlled clinical study was to assess the effect of a 940 nm diode laser as an adjunct to SRP therapy in the treatment of periodontal pockets.
Methods: In this study, twenty patients in need of periodontal treatment with periodontal pocket ≥ 4 mm were selected for this split-mouth clinical study. Test group treated by diode laser 940 nm as an adjunct with SRP, control group treated by SRP in contralateral quadrants. Clinical
... Show MoreIn this research is estimated the function of reliability dynamic of multi state systems and their compounds and for three types of systems (serial, parallel, 2-out-of-3) and about two states (Failure and repair) depending on calculating the structur function allow to describing the behavior of
This research includes a detailed morphological description of the Pollenia mesopotamica sp. nov. in Iraq. Locality, host plant and data of collection were given.
Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show More