Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.
Capillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreCapillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreAsphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of
... Show MoreThe study includes building a 3-D geological model, which involves get the Petrophysical properties as (porosity, permeability and water saturation). Effective Porosity, water saturation results from log interpretation process and permeability from special correlation using core data and log data. Clay volume can be calculated by six ways using IP software v3.5 the best way was by using gamma Ray. Also, Water Resistivity, flushed zone saturation and bulk volume analysis determined through geological study. Lithology determined in several ways using M-N matrix Identification, Density-Neutron and Sonic-Neutron cross plots. The cut off values are determined by Using EHC (Equivalent Hydra
Rotating cylinder electrode (RCE) is used . in weight loss technique , the salinity is 200000 p.p.m, temperatures are (30,5060,7080Co) . the velocity of (RCE) are (500,1500,3000 r.p.m). the water cut (30% , 50%). The corrosion rate of carbon steel increase with increasing rotating cylinder velocity. In single phase flow, an increase im rotational velocity from 500 to 1500 r.p.m, the corrosion rate increase from 6.88258 mm/y to 10.11563 mm/y respectively.
In multiphase flow, an increase in (RCE) from 500 to 1500 r.p.m leads to increase in corrosion rate from 0.786153 to 0.910327 mm/y respectively. Increasing brine concentration leads to increase in corrosion rate at water cut 30%.
The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreRadiological assessment for the East Baghdad oilfield-southern part was conducted in the current study. 10 samples (scale, soil, sludge, water, and oil) from the different stages of oil production were collected. 232Th, 226Ra, and 40K in the samples were analyzed with 40% efficiency for Gamma spectrometry. system based on HPGe. The findings indicated that the examined sites exhibit comparatively lower levels of NORM contamination, in contrast to other global oilfields. Nevertheless, certain areas, particularly those within separation stages, demonstrate relatively elevated NORM concentrations exceeding the global average in soil and sludge. The maximum value of 226Ra, 232Th, was found in sludge sample the findings indicated that ove
... Show MoreIt is very difficult to obtain the value of a rock strength along the wellbore. The value of Rock strength utilizing to perform different analysis, for example, preventing failure of the wellbore, deciding a completion design and, control the production of sand. In this study, utilizing sonic log data from (Bu-50) and (BU-47) wells at Buzurgan oil field. Five formations have been studied (Mishrif, Sadia, Middle lower Kirkuk, Upper Kirkuk, and Jaddala) Firstly, calculated unconfined compressive strength (UCS) for each formation, using a sonic log method. Then, the derived confined compressive rock strengthens from (UCS) by entering the effect of bore and hydrostatic pressure for each formation. Evaluations th
... Show More