Preferred Language
Articles
/
IRems44BVTCNdQwCVldP
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, FH3, and FH19 from the Yamama reservoir in the Faihaa Oil Field, southern Iraq. The framework includes: calculating permeability for uncored wells using the classical method and FZI method. Topological mapping of input space into clusters is achieved using the self-organizing map (SOM), as an unsupervised machine-learning technique. By leveraging data obtained from the four wells, the SOM is effectively employed to forecast the count of electrofacies present within the reservoir. According to the findings, the permeability calculated using the classical method that relies exclusively on porosity is not close enough to the actual values because of the heterogeneity of carbonate reservoirs. Using the FZI method, in contrast, displays more real values and offers the best correlation coefficient. Then, the SOM model and cluster analysis reveal the existence of five distinct groups.

Scopus Crossref
View Publication
Publication Date
Tue Mar 04 2014
Journal Name
International Journal Of Advanced Computing
User Authentication Approach using a Combination of Unigraph and Digraph Keystroke Features
...Show More Authors

In Computer-based applications, there is a need for simple, low-cost devices for user authentication. Biometric authentication methods namely keystroke dynamics are being increasingly used to strengthen the commonly knowledge based method (example a password) effectively and cheaply for many types of applications. Due to the semi-independent nature of the typing behavior it is difficult to masquerade, making it useful as a biometric. In this paper, C4.5 approach is used to classify user as authenticated user or impostor by combining unigraph features (namely Dwell time (DT) and flight time (FT)) and digraph features (namely Up-Up Time (UUT) and Down-Down Time (DDT)). The results show that DT enhances the performance of digraph features by i

... Show More
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Construction Engineering And Management
Measuring and Evaluating Safety Maturity of Construction Contractors: Multicriteria Decision-Making Approach
...Show More Authors

View Publication
Scopus (69)
Crossref (55)
Scopus Clarivate Crossref
Publication Date
Sun Oct 03 2021
Journal Name
Rudn Journal Of Language Studies, Semiotics And Semantics
Motivation of Word Formation in Russian and Arabic Languages and its Role in Achieving Translation Equivalence
...Show More Authors

The article is devoted to the issue of word-formation motivation, which does not lose its relevance and plays a role not only in disclosing formal-semantic relations between words of one language and has not only theoretical, but also applied significance. The authors consider word-formation motivation consistently in its varieties in a comparative way on the materials of so different languages as Russian and Arabic and approach the mechanism of achieving semantic equivalence of translation. To the greatest extent, word-formation activity today, due to objective reasons, affects some special branch (technical, medical, etc.) vocabulary, which is increasing from year to year in national dictionaries. This extensive material, selected

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of bubble size in Bubble columns using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Water quality assessment and sodium adsorption ratio prediction of Tigris River using artificial neural network
...Show More Authors

Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology (jestec)
Water Quality Assessment and Sodium Adsorption Ratio Prediction of Tigris River Using Artificial Neural Network
...Show More Authors

Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201

... Show More
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Diagnostic Potential Role of CXCL3 and Leptin Levels in Breast Cancer
...Show More Authors

The risk of breast cancer development is believed to be attributed to the alterations of a number of key biological components. Within this context, elevated levels of some chemokines that act as growth factors and can promote cancer development. The current study was designed to evaluate CXCL3 (a chemokine C-X-C Motif Ligand 3) and leptin (a peptide hormone synthesized by adipose tissue with cytokine activity) serum of Iraqi breast cancer patients in comparison to healthy controls. A total of 90 participants consisted of 60 patients diagnosed with breast cancer and 30 healthy women as control group were enrolled into this case-control study. Venous blood samples were collected from all participants to evaluate CXCL3 and leptin serum levels

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Apr 26 2023
Journal Name
Journal Of Contemporary Medical Sciences
A potential role of extracellular DNA in biofilm and ciprofloxacin resistance
...Show More Authors

Objectives: This study aims to broaden our knowledge of the role of eDNA in bacterial biofilms and antibiotic-resistance gene transfer among isolates. Methods: Staphylococcus aureus, E. coli, and Pseudomonas aeruginosa were isolated from different non-repeated 170 specimens. The bacterial isolates were identified using morphological and molecular methods. Different concentrations of genomic DNA were tested for their potential role in biofilms formed by study isolates employing microtiter plate assay. Ciprofloxacin resistance was identified by detecting a mutation in gyrA and parC. Results: The biofilm intensity significantly decreased (P < 0.05) concerning S. aureus isolates and insignificantly (P > 0.05) concernin

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Fri Sep 15 2023
Journal Name
The International Journal Of Central Banking
THE ROLE OF DIGITAL TRANSFORMATION AND KNOWLEDGE BUILDING IN EDUCATIONAL INSTITUTIONS
...Show More Authors

This study aims at identifying the correlation between digital transformation and knowledge building in educational institutions, as well as finding the influence relationship between digital transformation and knowledge building in educational institutions and knowing the dimensions of digital transformation that have the most impact in improving the level of knowledge building, and by adopting the methodological descriptive analysis method in the Ministry of Education. Education and educational institutions in Baghdad. This research deals with digital transformation as an independent variable according to two dimensions (digital adaptability and digital readiness). Knowledge building was adopted as an approved variable using the s

... Show More
Preview PDF