Preferred Language
Articles
/
IRe2DZABVTCNdQwCMoPz
Validation of UV-visible spectrophotometric method for niclosamide in different media
...Show More Authors

Purpose: To validate a UV-visible spectrophotometric technique for evaluating niclosamide (NIC) concentration in different media across various values of pH. Methods: NIC was investigated using a UV-visible spectrophotometer in acidic buffer solution (ABS) of pH 1.2, deionized water (DW), and phosphate buffer solution (PBS), pH 7.4. The characterization of NIC was done with differential scanning calorimeter (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV analysis was validated for accuracy, precision, linearity, and robustness. Results: The DSC spectra showed a single endothermic peak at 228.43 °C (corresponding to the melting point of NIC), while XRD and FTIR analysis confirmed the identity, crystallinity and purity of NIC. In all media, the measured concentration of NIC was within ± 5 % of the actual value, which confirmed accuracy. The percentage relative standard deviation values were < 1 %, reflecting the precision of the method. The range of concentration measured was between 2 and 24 μg/mL, and all coefficient of determination (R2) values were > 0.99, indicating the linearity of the established analytical method. The limit of detection (LOD) and limit of quantification (LOQ) values were 0.122 and 0.407 μg/mL in ethanol, 0.530 and 1.766 μg/mL in ABS (pH 1.2), 0.224 and 0.747 μg/mL in DW, and 0.798 and 2.662 μg/mL in PBS, pH 7.4. The robustness was confirmed as the measured concentration under slight changes in temperatures and wavelengths were insignificant (p > 0.05). Conclusion: Based on the results above, the UV-visible spectrophotometric method under investigation was validated to be accurate, precise, linear, and robust in all the different media for the determination of NIC.

Scopus
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Two-Dimensional Fractional Partial Differential Equation with parameter
...Show More Authors

 In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.

View Publication Preview PDF
Publication Date
Tue Jan 11 2022
Journal Name
3rd International Scientific Conference Of Alkafeel University (iscku 2021)
Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method
...Show More Authors

In this research, the results of the Integral breadth method were used to analyze the X-ray lines to determine the crystallite size and lattice strain of the zirconium oxide nanoparticles and the value of the crystal size was equal to (8.2nm) and the lattice strain (0.001955), and then the results were compared with three other methods, which are the Scherer and Scherer dynamical diffraction theory and two formulas of the Scherer and Wilson method.the results were as followsScherer crystallite size(7.4nm)and lattice strain(0.011968),Schererdynamic method crystallite size(7.5 nm),Scherrer and Wilson methodcrystallite size( 8.5nm) and lattice strain( 0.001919).And using another formula for Schearer and Wilson methodwe obtain the size of the c

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Zenali Iteration Method For Approximating Fixed Point of A δZA - Quasi Contractive mappings
...Show More Authors

This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations  like Mann, Ishikawa, oor, D- iterations, and *-  iteration for new contraction mappings called  quasi contraction mappings. And we  proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *-  iteration) equivalent to approximate fixed points of  quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type  by employing zenali iteration also discussed.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Constructing RKM-Method for Solving Fractional Ordinary Differential Equations of Fifth-Order with Applications
...Show More Authors

This paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs  in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Tue Feb 21 2017
Journal Name
Biomechanics And Modeling In Mechanobiology
A novel method for non-invasively detecting the severity and location of aortic aneurysms
...Show More Authors

The influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Viii. International Scientific Congress Of Pure, Applied And Technological Sciences (minar Congress)
DETERMINING AN APPROPRIATE INITIAL VALUE OF ECCENTRICITY FOR LOW EARTH SATELLITES USING EULER METHOD
...Show More Authors

The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 20 2016
Journal Name
Sociological Methods &amp; Research
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo

... Show More
View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref