Purpose: To validate a UV-visible spectrophotometric technique for evaluating niclosamide (NIC) concentration in different media across various values of pH. Methods: NIC was investigated using a UV-visible spectrophotometer in acidic buffer solution (ABS) of pH 1.2, deionized water (DW), and phosphate buffer solution (PBS), pH 7.4. The characterization of NIC was done with differential scanning calorimeter (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV analysis was validated for accuracy, precision, linearity, and robustness. Results: The DSC spectra showed a single endothermic peak at 228.43 °C (corresponding to the melting point of NIC), while XRD and FTIR analysis confirmed the identity, crystallinity and purity of NIC. In all media, the measured concentration of NIC was within ± 5 % of the actual value, which confirmed accuracy. The percentage relative standard deviation values were < 1 %, reflecting the precision of the method. The range of concentration measured was between 2 and 24 μg/mL, and all coefficient of determination (R2) values were > 0.99, indicating the linearity of the established analytical method. The limit of detection (LOD) and limit of quantification (LOQ) values were 0.122 and 0.407 μg/mL in ethanol, 0.530 and 1.766 μg/mL in ABS (pH 1.2), 0.224 and 0.747 μg/mL in DW, and 0.798 and 2.662 μg/mL in PBS, pH 7.4. The robustness was confirmed as the measured concentration under slight changes in temperatures and wavelengths were insignificant (p > 0.05). Conclusion: Based on the results above, the UV-visible spectrophotometric method under investigation was validated to be accurate, precise, linear, and robust in all the different media for the determination of NIC.
A simple, accurate and precise spectrophotometric method has been developed for the analysis of sulfamethoxazole (SMZ) in pure form and pharmaceutical preparation. The method involves a direct charge transfer complexation of sulfamethoxazole (SMZ) with sodium nitroprusside (SNP) in alkaline medium and the presence of hydroxyl amine hydrochloride. Variables affecting the formation of the formed orange colored complex were optimized following two approaches univariate and central composite experimental design (CCD) multivariate. Under optimum recommended conditions, the formed complex exhibits λmax at 512 nm and the method conforms Beer's law for SMZ concentration in the range of 5.0-150.0 (µg.mL-1) with molar absorptivi
... Show MoreThis paper concerned with development of a spectrophotometric method for the determination of paracetamol, based on the diazotisation and coupling reaction with anthranilic acid in basic medium, to form an intense yellow coloured, water-soluble and stable azo-dye which shows a maximum absorption at 421nm. Beer’s law is obeyed over the concentration range of 1.0-10 µg/ml; with molar absorptivity of 2.1772×104 L.mol -1.cm-1 and Sandell’s sensitivity index 6.9446 µg.cm-2. The method has been applied successfully for the determination of paracetamol in pharmaceutical formulation.
It was confirmed in this research that the ligand calcichrome formed stable complex with calcium ion at pH of 8.5 which verified by UV/Vis and FTIR spectral analysis and the complexation occurred via hydroxyl groups .
The stoichiometric ratio of the formed complex was found to be 1:1 by mole ratio and continuous variation methods . Dry ashing method of the complex and flame emission photometric analysis offered a calcium percentage in calcium complex equal 4.5% with an error of 2.41% due to experimental errors .
A new, simple and sensitive spectrophotometric method was described for the determination of famotidine (FAM) as a pure material and in pharmaceutical formulation. This method was based on diazotization and coupling reaction between famotidine and diazotized solution of metochlopramide hydrochloride (DMPH) in the presence of phosphate buffer solution to give a compound of azo dye having orange color soluble in water with high absorptivity at a wave length of 478 nm. The data shows that FAM and DMPH combine in the molar ratio of 1:1 at PH 7.0 .The method obeys Beer's law over concentration range of 1-40 ?g.ml-1 of famotidine with a correlation coefficient of 0.9955 and a detection limit of 0.10 ?g.ml-1. The apparent molar absorptivity re
... Show MoreAn accurate and sensitive spectrophotometric method has been developed for the determination of carbamazepine (CRN.) in pure and dosage forms. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPHz) by potassium periodate than coupling with carbamazepine (CRN.) in alkaline medium to form a stable yellowish brown colored water-soluble dye with a maximum absorption at 485 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (4-50 μg.mL-1) with molar absorptivity of (6.7335×103 L.mol-1.cm1). The limit of detection was (0.1052 μg.mL-1) and Sandell’s sensitivity value was 0.0350 μg.cm-2.The proposed method
... Show MoreAn accurate and sensitive spectrophotometric method has been developed for the determination of carbamazepine (CRN.) in pure and dosage forms. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPHz) by potassium periodate than coupling with carbamazepine (CRN.) in alkaline medium to form a stable yellowish brown colored water-soluble dye with a maximum absorption at 485 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (4-50 μg.mL-1) with molar absorptivity of (6.7335×103 L.mol-1.cm1). The limit of detection was (0.1052 μg.mL-1) and Sandell’s sensitivity value was 0.0350 μg.cm-2.
... Show MoreA simple, sensitive, accurate and economic spectrophotometric method has been developed for the determination of sulfacetamide (SFA) in pure form, synthetic sample and urine. The method is based on diazotization of primary amine group of sulfacetamide with sodium nitrite and hydrochloric acid followed by coupling with chromotropic acid in alkaline medium to obtain a stable orange colored chromogen which exhibit a maximum absorption (λmax) at 511.5 nm. Different variables affecting the completion of reaction have been carefully optimized following the classical univariate sequence and modified simplex method (MSM). Under optimized conditions, Beer’s law obeyed in the concentration range of (0.5- &nbs
... Show MoreA simple, rapid spectrophotometric method has been established for the determination of chlorpromazine hydrochloride (CPZ) in its pure form and in a tablet formulations. The suggested method is based on the oxidative coupling reaction with4-nitroainlline using KIO3 in acidic solution to produce a violet colored product with maximum absorption at λ=526 nm.The analytical data obtained throughout this study could be summarid as follows: 1ml of 1M HCl (pH=2.2), 1 ml of 4-nitroanilline (1x10-2M), and 1.5ml of (1x10-2)KIO3 per 25 ml reaction medium. The order of a
... Show More