Preferred Language
Articles
/
IRcuP5IBVTCNdQwC9Kn5
Morphological study of porous aromatic schiff bases as a highly effective carbon dioxide storages
...Show More Authors

Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett- Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.

Publication Date
Thu Mar 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Synthesis and Characterization of New Aromatic Poly(amide-imide)s
...Show More Authors

New thermally stable aromatic poly(amide-imide)s ( PAI1- PAI4 ) were synthesized from direct polycondensation reaction of Terephthalic acid and Phthalic acid with two new different diamine monomers derivatives of 1,2,4,5-tetracarboxilic benzene dianhydride as a second diacides in a medium consisting of triphenyl phosphite (TPP) in N-methyl-2pyrrolidone (NMP) / pyridine solution containing dissolved calcium chloride CaCl2. The polymerization reaction produced a series of novel poly(amide-imide) in high yield. The new monomers were characterized by FTIR, 1H-NMR spectroscopy. The resulting polymers were typically characterized by means of FT-IR, 1H-NMR spectroscopy, and solubility tests. Thermal properties of the poly(amide-imide)s were als

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Aip Conference Proceedings
Highly-charged EDTA-2Na salt as a novel draw solution in pressure-retarded Osmosis process
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Polymer Research
Design, and synthesis of a plasticizer- Schiff’s bases complexes as additive for polystyrene
...Show More Authors

This work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper

... Show More
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Nov 02 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Study of Adsorption of Zr (IV) on Manganese Dioxide
...Show More Authors

The adsorption of zirconium, on manganese dioxide from nitric

acid solutions has been studied as a function of shaking time, concentration  of  electrolytes,  concentration  of  adsorbate  and temperature effects (25- 90°C).

Four   hours   of   shaking  was   appropriate  to   ensure   that  the

adsorption plateau was reached and the adsorption of zirconium decrease with an increase in nitric acid concentration. The limiting adsorption  capacities at 3 molar nitric acid was 0.2 Zr per mole of Mn02.   Working  at  elevated   temperature  was  in  favour  

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 11 2002
Journal Name
Iraqi Journal Of Laser
Investigating the Effects of Carbon Dioxide Laser Fluence on Oral Soft Tissue
...Show More Authors

This study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.

View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Systematic Reviews In Pharmacy
Synthesis And Preliminary Antimicrobial Evaluation Of Schiff Bases Of N -Benzyl Isatin Derivatives
...Show More Authors

Isatin (1H-indole-2, 3-dione) and its analogs are an important class of heterocyclic compounds. N-benzyl isatins and Schiff bases of isatin analogs have been reported to demonstrate a variety of biological activities. This work illustrates the synthesis of new N-benzylisatin Schiff bases and studies their biological activity. Firstly, Isatin and its analogs; 5-methoxyisatin, 5-fluoroisatin reacted with benzyl iodide to obtain N-benzylated derivatives of isatins 2 (ac). Secondly, these compounds were reacted with different amines (sulphanilamide and 4-methyl sulphonyl aniline) separately, to obtain Schiff bases compounds 3 (ac) and 4 (ac), respectively. The synthesized compounds were characterized by using FT-IR and 1HNMR spectroscopy. The s

... Show More
Publication Date
Sat May 27 2017
Journal Name
Journal Of Pharmaceutical Sciences And Research
Synthesis, Preliminary Antimicrobial Evaluation and Molecular Docking of new Schiff bases of Ceftizoxime
...Show More Authors

Schiff bases of Ceftizoxime sodium were synthesized in an attempt to improve the antimicrobial spectrum of Ceftizoxime. Aminothiazole ring of Ceftizoxime is linked directly through an imino group to different aromatic aldehydes reacted by nucleophilic addition using trimethylamine (TEA), as a catalyst and refluxed in methanol. The antimicrobial activity was evaluated for such Schiff bases using disc diffusion method. Molecular docking was conducted on certain penicillin-binding proteins (PBPs) and carboxypeptidases using 1- click docking software. Schiff bases of Ceftizoxime were prepared with reasonable yields and their chemical structures were confirmed by spectral analysis (FTIR, 1H-NMR) and elemental microanalysis (CHNS). The antibacter

... Show More
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region from Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles
...Show More Authors

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of Solid Random Gain Media in Visible Region From Rhodamine Dye Solutions Containing Highly-Pure Titanium Dioxide Nanoparticles
...Show More Authors

In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.

View Publication Preview PDF
Publication Date
Mon Mar 22 2010
Journal Name
Al- Mustansiriya J. Sci
Synthesis of New Amides and Schiff Bases derived From 2-Amino-1,3,4- Oxadiazole
...Show More Authors

New compounds of amids [IV]a-e and Schiff bases [V]f-h derived from 2-amino-1,3,4-oxadiazoles [III] were synthesized and characterized by physical and spectraldata.2-Aamino-1,3,4-oxadiazoles was prepared by the action of bromine on acorresponding semicarbazide [II]( which was prepared by reaction of dialdehyde [I]with semicarbazide hydrochloride ) in the presence of sodium acetate , followed byan intramolecular cyclization . (PDF) Synthesis of New Amides and Schiff Bases derived From 2-Amino -1,3,4- Oxadiazole. Available from: https://www.researchgate.net/publication/326679206_Synthesis_of_New_Amides_and_Schiff_Bases_derived_From_2-Amino_-134-_Oxadiazole [accessed Nov 15 2023].