Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett- Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.
The objective of this study was shed light for cultivation and maintenance of Trichomonas vaginalis parasite growth after isolated it by vaginal swaps from females suffering vaginitis and abnormal vaginal discharges in these media CPLM and TAB media to detect growth curve, morphological changes and viability of parasite in the two culture media, together with effect of sheep and bovine serum on the growth of it. The results of this studies were showed there was abtaine differences between the two types of media , The maximum growth of parasite was in TAB medium after 72 hours incubation with use of bovine serum, while such growth was maximized after 144 hours incubation with the use of sheep serum. In CPLM medium, a maximum gro
... Show MoreThis study included the estimation of growth rate, viability and morphological changes in different culture media (NNN, P-Y, RPMI- 1640, and Panmed). Promastigotes cultured in RPMI-1640 showed maximal growth rate after (2, 4, 6) days of cultivation (27.26 ± 0.05), (172.20 ± 0.1) and (343.81 ± 1.48) million parasites / ml for each day respectively, while P-Y media gave the highest mean of growth rat after (8 and 10) days of cultivation (307.16 ± 1.67) and (303.5 ± 4.96) million parasites / ml for each day respectively. P-Y medium showed the maximal percentage of viability after (2, 4, 6, 8, and 10) days of cultivation (99.76 ± 0.5) %, (98.30 ± 0.17) %, (96.1 ± 0.1) %, (92.5 ± 0.52) % and (87.26 ± 0.05) % for each day respectively.
... Show MoreJatropha L. is an exotic genus to Iraq and it has been cultivated in gardens for ornamental purposes because of the shiny red color of the flowers. The plant adapted to environmental conditions and succeeded in growing and blooming, which is why the species was interested to study. The species Jatropha integerrima Jacq. was examined and diagnosed for the first time in Iraq. Morphological and anatomical characteristics for leaves (considering that the variations are the most reliable and taxonomically important) were provided. The Phytochemical screening showed the presence of alkaloids, flavonoids, terpenes, tannins and saponins. The qualitative analysis by TLC indicated the presence of alkaloids and flavonoid that was detected by specia
... Show MoreThe main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones
This study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil at dif
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil
... Show MorePorous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use
... Show MoreIn this study, composite materials consisting of Activated Carbon (AC) and Zeolite were prepared for application in the removal of methylene blue and lead from an aqueous solution. The optimum synthesis method involves the use of metakaolinization and zeolitization, in the presence of activated carbon from kaolin, to form Zeolite. First, Kaolin was thermally activated into amorphous kaolin (metakaolinization); then the resultant metakaolin was attacked by alkaline, transforming it into crystalline zeolite (zeolitization). Using nitrogen adsorption and SEM techniques, the examination and characterization of composite materials confirmed the presence of a homogenous distribution of Zeolite throughout the activated carbon.
... Show More