Preferred Language
Articles
/
IRc9-Y8BVTCNdQwCyYKW
Numerical Solution of Non-linear Delay Differential Equations Using Semi Analytic Iterative Method
...Show More Authors

Crossref
View Publication
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Approximate Numerical Solutions for Linear Volterra Integral Equations Using Touchard Polynomials
...Show More Authors

In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
using collocation method for solving differential equations with time lag
...Show More Authors

in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach

View Publication Preview PDF
Publication Date
Sun Sep 06 2015
Journal Name
Baghdad Science Journal
Oscillations of Third Order Half Linear Neutral Differential Equations
...Show More Authors

In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Heun Method Using to Solve System of NonLinear Functional Differential Equations
...Show More Authors

In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Crossref
Publication Date
Fri Nov 01 2013
Journal Name
Al-nahrain Journal Of Science
Modified third order iterative method for solving nonlinear equations
...Show More Authors

Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.

Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
Efficient Iterative Method for Solving Korteweg-de Vries Equations
...Show More Authors

The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of 

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods
...Show More Authors

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solution of Second Kind Volterra Integral Equations Using Non-Polynomial Spline Functions
...Show More Authors

In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of The Association Of Arab Universities For Basic And Applied Sciences
Semi-analytical method for solving Fokker-Planck’s equations
...Show More Authors

View Publication
Crossref (7)
Crossref