It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological properties of water-based drilling fluid using other simple measurable properties. While mud density, marsh funnel, and solid% are key input parameters in this study, the output models are plastic viscosity, yield point, apparent viscosity and gel strength. The prediction methods have been applied on datasets taken from the final reports of two wells drilled in the Ahdeb oil field, eastern Iraq. To test the performance ability of the developed models, two error-based metrics (determination coefficient R2 and root mean square error have been used in this study. The current results support the evidence that MW, MF, and solid% are consistent indexes for the prediction of rheological mud properties. Both mud density and solid content have a relative-significant effect on increasing PV, YP, AV, and gel strength. The results also reveal that both MRA and ANN are conservative in estimating the fluid rheological properties, but ANN is more precise than MRA. Eight empirical mathematical models with high performance capacity have been developed in this study to determine the rheological fluid properties using simple and quick equipment such as mud balance and marsh funnel. This study presents cost-effective models to determine the rheological fluid properties for future well planning in Iraqi oil fields.
Ternary semiconductors AB5C8 (A = Cu/Ag, B = In and C = S, Se or Te) have been investigated. The CuIn5S8 and AgIn5S8 have been synthesize in cubic spinel structure with space group (Fd3m), whereas CuIn5Se8, AgIn5Se8, CuIn5Te8 and AgIn5Te8 have tetragonal structures with space group P-42m. The relaxed crystal geometry, electrical properties such as electronic band structure and optoelectronic properties are predicted by using full potential method in this work. For the determination of relaxed crystal geometry, the gradient approximation (PBE-GGA) is used. All the studied compounds are semiconductors based on their band structures in agreement with the experimental results, and their bulk moduli are in the range 35 to 69 GPa. Wide absorption
... Show MoreVarious activities taking place within the city of Baghdad have significantly contributed to organic pollution in Rivers Tigris and Diyala. The present study aimed to assess some physical, chemical and biological aspects of six sites on Rivers Tigris and Diyala as they flow through the city of Baghdad. Monthly samples were collected for the period January to December, 2005. Marked differences in the physical and chemical characteristics of water were noted between the two rivers’ sites. Average values during the study period of dissolved oxygen, biochemical oxygen demand, particulate organic matter, nitrate, phosphate and total dissolved solids for Tigris and Diyala were 7.8,4.7; 2.4,10.4; 350.1,921.4;7.8,13.9;1.2,4.8;814,2176 mg / l re
... Show MoreDye-sensitized solar cells (DSSC) create imitation photosynthesis by using chemical reactions to produce electricity from sunlight. DSSC has been pursued in numerous studies due to its capability to achieve efficiencies of up to 15% with artificial photosensitizer in diffuse light. However, artificial photosensitizers present a limitation because of the complex processing of metal compound. Therefore, various types of sensitizers were developed and synthesized to surpass the artificial sensitizer performances such as natural sensitizers from bio-based materials including plants, due to simple processing techniques and low environmental impact. Thus, this study examines the potential and properties of natural sensitizers from the was
... Show MoreThis experiment presented essential oils by GC/MS, pigment content, and their antioxidant activities as well as sensory evaluation of delight samples. Limonene (66.88%) was the most prevalent yield. The peels of clementine had DPPH and ABT Scavenging activity. All levels of pigment extract had better scores for all sensory values and recorded acceptable scores in terms of appearance, color, aroma, and overall acceptability compared to control delight. Besides, delight samples containing 15 mg astaxanthin pigment extract showed maximum sensory scores compared to other samples and control delight. On the other hand, the product was less acceptable to the panelists compared to control in the case of the addition of 3.75 mg astaxanthin pigme
... Show MoreAn experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th
... Show MoreAn essential issue in obstetrics is the prevalence of maternal and fetal complications in pregnant women with polycystic ovary syndrome (PCOS). The purpose of the present study was to investigate the prevalence of pregnancy complications among various phenotypes of pregnant women with PCOS.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.