Preferred Language
Articles
/
IIYtroYBIXToZYAL0aRH
Water Quality Detection using cost-effective sensors based on IoT
...Show More Authors

Crossref
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Content Based Image Retrieval Based on Feature Fusion and Support Vector Machine
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Journal Of Robotics
Real-Time SLAM Mobile Robot and Navigation Based on Cloud-Based Implementation
...Show More Authors

This study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database

... Show More
View Publication
Scopus (8)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
Iraqi Journal Of Science
Gray-Scale Image Compression Method Based on a Pixel-Based Adaptive Technique
...Show More Authors

     Today in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Engineering
Synchronous Buck Converter with Perturb and Observe Maximum Power Point Tracking Implemented on a Low-Cost Arduino-microcontroller
...Show More Authors

Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to enhance efficiency and maximize the output power of PV module, regardless the variation of temperature, irradiation, and the electrical characteristics of the load. A new MPPT system has been presented in this research, consisting of a synchronous DC-DC step-down Buck converter controlled by an Arduino microcontroller based unit. The MPPT process with Perturb and Observe method is performed with a DC-DC converter circuit to overcome the problem of voltage mismatch between the PV modules and the loads. The proposing system has high efficiency, lower cost and can be easily modified to handle more energy sources. The test results indicate that the u

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (11)
Crossref (6)
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Data integrity enhancement for the encryption of color images based on CRC64 technique using multiple look-up tables
...Show More Authors

Communication is one of the vast and rapidly growing fields of engineering, where
increasing the efficiency of communication by overcoming the external
electromagnetic sources and noise is considered a challenging task. To achieve
confidentiality for color image transmission over the noisy communication channels
a proposed algorithm is presented for image encryption using AES algorithm. This
algorithm combined with error detections using Cyclic Redundancy Check (CRC) to
preserve the integrity of the encrypted data. This paper presents an error detection
method uses Cyclic Redundancy Check (CRC), the CRC value can be generated by
two methods: Serial and Parallel CRC Implementation. The proposed algorithm for
the

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Bulletin Of Electrical Engineering And Informatics
Lightweight hamming product code based multiple bit error correction coding scheme using shared resources for on chip interconnects
...Show More Authors

In this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimated Outlet Temperatures in Shell-and-Tube Heat Exchanger Using Artificial Neural Network Approach Based on Practical Data
...Show More Authors

The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 02 2025
Journal Name
Journal Of Business Economics For Applied Research
The impact of total quality management on the quality engineering of Diyala State Company's products and production processes
...Show More Authors

View Publication
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF