Nitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted u
... Show MoreThe traveling salesman problem (TSP) is a well-known and important combinatorial optimization problem. The goal is to ï¬nd the shortest tour that visits each city in a given list exactly once and then returns to the starting city. In this paper we exploit the TSP to evaluate the minimum total cost (distance or time) for Iraqi cities. So two main methods are investigated to solve this problem; these methods are; Dynamic Programming (DP) and Branch and Bound Technique (BABT). For the BABT, more than one lower and upper bounds are be derived to gain the best one. The results of BABT are completely identical to DP, with less time for number of cities (n), 5 ≤ n ≤ 25. These results proof the efficiency of BABT compared with so
... Show MoreMany production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreENGLISH
The current study aims to find a new plan to manage the water quality of the western part of the Hammar Marsh to reduce the salts that cause problems for the marshes and preserve their environmental life by isolating the southwestern part of the Hammar Marsh by closing the outlet under the railway embankment. The outlet is discharging saline water to the east-western part of Al Hammar Marsh. After isolating the southwestern part of the marsh, a new outlet is proposed. The impact of the flow hydrodynamics on improving the water quality was simulated using the SMS model. The hydrodynamics and water quality simulation models for the marsh are : a hydrodynamic model and average depth (SMS RMA2) and a two-dimensional water quality model (SMS
... Show MoreThis research includes depositionof thin film of semiconductor, CdSe by vaccum evaporation on conductor polymers substrate to the poly aniline where, the polymer deposition on the glass substrats by polymerization oxidation tests polymeric films and studied the structural and optical properties through it,s IR and UV-Vis , XRD addition to thin film CdSe, on of the glass substrate and on the substrate of polymer poly-aniline and when XRD tests was observed to improve the properties of synthetic tests as well as the semiconductor Hall effect proved to improve the electrical properties significantly
Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto
... Show MoreMagnetic Resonance Imaging (MRI) is one of the most important diagnostic tool. There are many methods to segment the
tumor of human brain. One of these, the conventional method that uses pure image processing techniques that are not preferred because they need human interaction for accurate segmentation. But unsupervised methods do not require any human interference and can segment the brain with high precision. In this project, the unsupervised classification methods have been used in order to detect the tumor disease from MRI images. These metho
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show More