The removal of heavy metal ions from wastewater by sorptive flotation using Amberlite IR120 as a resin, and flotation column, was investigated. A combined two-stage process is proposed as an alternative of the heavy metals removal from aqueous solutions. The first stage is the sorption of heavy metals onto Amberlite IR120 followed by dispersed-air flotation. The sorption of metal ions on the resin, depending on contact time, pH, resin dosage, and initial metal concentration was studied in batch method .Various parameters such as pH, air flow rate, and surfactant concentration were investigated in the flotation stage. Sodium lauryl sulfate (SLS) and Hexadecyltrimethyl ammonium bromide (HTAB) were used as anionic and cationic surfactant re
... Show MorePhosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Research in the field of biometric simulation is in the design of various and various industrial products, but it still needs new studies and research that are compatible with scientific and technological development, especially in the field of computing. Recognition, deduction, and simulation of nature, for example, the use of animal bones as tools in cutting, hunting or fighting, in addition to the use of animal drawings in cave drawings as symbols of strength, as well as dance movements and face painting to simulate the natural reality that surrounds humans. This trend developed to include simulation of nature in the formal and functional aspect to reach To vocabulary and solutions that help man in his daily life, the research probl
... Show MoreOne of the significant environmental problems is the pollution of water by dyes;. Biological treatment method was used, which is one of the effective ways to reduce this sort of pollution as it is environment friendly, economic and does not require any expertise. Under controlled conditions, this study estimated the efficacy of dry biomass for Bacillus cereus to reduce Direct Blue 2 dye from the aqueous solution. The optimum conditions such as pH values, contact time and concentration of dyes, were used in this research. The end results showed that the adsorption efficiency, when using a weight of bacterial biomass 0.2 g/50mL, reached 69.2% at a concentration of 10 ppm after one hour at 40°C and pH5. While it reached 5
... Show MoreThe nanostructured MnO2 /carbon fiber (CF) composite electrode was prepared using the anodic electrodeposition process. The crystal structure and morphology of MnO2 particles were determined with X-ray diffraction and field-emission scanning electron microscopy. The electrosorptive properties of the prepared electrode were investigated in the removal of cadmium ions from aqueous solution, and the effect of pH, cell voltage, and ionic strength was optimized and modeled using the response surface methodology combined with Box–Behnken design. The results confirm that the optimum conditions to remove Cd(II) ions were: pH of 6.03, a voltage of 2.77 V, and NaCl concentration of 3 g/L. The experimental results showed a good fit for the Freundli
... Show MoreThe presence of heavy metal in environment associated with several health problems. The clean up environment from lead (Pb) and Nickel (Ni) represent major challenges. In his study, planktonic and immobilized bacteria were used to purify the water from Pb and Ni in Lab. In the present study, three bacterial isolates of Staphylococcus aureus (isolated from wound swaps), Pseudomonas aeruginosa (isolated from wound swaps) and Pantoea (isolated from urine samples) and identified using biochemical methods to check their ability to biosorb Pb and Ni. Ten PPM of Pb and Ni were added to the deionized distilled water and 107 c.f.u. of planktonic bacteria were used to biosorpe Pb and Ni. Similar experiment was repeated but
... Show MoreIn this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show More