Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show MoreAbstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreOffline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreTo determine the evaluation of education program on women's knowledge regarding managing BSE. The present quasi- experimental study, Non-probability (purposive), sample consisting of (260) women who are employee, and students in both colleges (Nursing college, Medical and Health Techniques College). The sample consist of two groups, study group (130) including those in (Nursing college), and control group (130) in (Medical and Health Techniques College). A questionnaire was constructed which included, Demographic information, Reproductive information, Family history, Previous medical history, and information about women's knowledge toward management of breast self examination (BSE). Instrument validity and reliability was determined. Data w
... Show MoreAbstract A descriptive study to assess of factors that contributes of lung cancer. The study was carried out in Specialized Surgery teaching hospital, Ibin Al- Beetar hospital and Ibin Al- Nafees hospital for the period From January 2004 to October 2004 .The study aimed to assess the factors that contribute to lung cancer and to identify the relationship between the variables of the study with lung cancer. A purposive (non-probability) sample of (70) patients with lung cancer was selected for the study. An assessment form was employed for the purpose of the study. Test- retest reliability was employed through
The present study aimed to shed light on the urine HSP70 concentration of patients with urinary bladder carcinoma UBC and control subjects as new urinary biomarker. The second aim was to associate this protein concentration with UBC stage and grade in patients with UBC. A direct ELISA was used to quantify urine HSP concentrations in 58 patients with urinary bladder carcinoma UBC with different grades (G) and stages (T) all malignant of them was transitional cell carcinoma (TCC) type , 15 from patients with urinary Bladder disorders other than cancer UBD and 15 healthy subjects(control) . Urine concentrations of HSP70 were elevated in patients with UBC compared to those without UBC (healthy and UBD, P< 0.5). There was a high signifi
... Show More