Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
Abstract Objective: The study aimed to assess the factors contributes of patient with bladder cancer and to find out the relationship between the factors of bladder cancer with certain variable. Methodology: A descriptive study to assessment of factors that contribute to bladder cancer that was carried out Al-Karama teaching hospital, Al-Kendy teaching hospital, Specialty Surgery teaching hospital and Al-Yarmok teaching hospital for the period of November 2003 to August 2004. A purposive (non-probability) sample of (100) patients with bladder cancer. An assessment from was constructed for the purpose of the st
A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreAbstract
The current research aims to identify the effect of using a model of generative learning in the achievement of first-middle students of chemical concepts in science. The researcher adopted the null hypothesis, which is there is no statistically significant difference at the level (0.05) between the mean scores of the experimental group who study using the generative learning model and the average scores of the control group who study using the traditional method in the chemical concepts achievement test. The research consisted of (200) students of the first intermediate at Al-Farqadin Intermediate School for Boys affiliated with the Directorate of General Education in Baghdad Governorate / Al-Karkh 3 wit
... Show MoreStandardized uptake values, often known as SUVs, are frequently utilized in the process of measuring 18F-fluorodeoxyglucose (FDG) uptake in malignancies . In this work, we investigated the relationships between a wide range of parameters and the standardized uptake values (SUV) found in the liver. Examinations with 18F-FDG PET/CT were performed on a total of 59 patients who were suffering from liver cancer. We determined the SUV in the liver of patients who had a normal BMI (between 18.5 and 24.9) and a high BMI (above 30) obese. After adjusting each SUV based on the results of the body mass index (BMI) and body surface area (BSA) calculations, which were determined for each patient based on their height and weight. Under a variety of dif
... Show MoreCombination of natural poly-phenolic compounds with chemotherapeutic agents is recently being a novel strategy in cancer therapy researches owing to their potential antioxidant and anti-inflammatory properties that modulate several intracellular signaling pathways.
Resveratrol and Baicalein are well known poly-phenolic compounds that belong to stilbene and flavone subclasses, respectively.
This study aims to investigate the possible enhancement effect of resveratrol and Baicalein when combined with doxorubicin using a different combination ratio and applied on two cancer cell lines: HCT116 (colorectal cancer cells) and HepG2 (hepatocellular cancer cells). It also investigates the possibility of such natural compounds to p
... Show More