Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
The study aimed to assess the level of ANG‑2 in MM patients at diagnosis and in remission state and elaborate on its correlation with interleukin‑6 (IL‑6) and beta‑2 microglobulin (B2M) levels. Sixty MM patients; 20 newly diagnosed (ND), and 40 patients in remission were included. Twenty healthy individuals were included as a control group. Plasma levels of ANG‑2, B2M, and IL‑6 were tested by enzyme‑lin ked immunosorbent assay. There are significant statistical differences between ND patients and those in remission in hemoglobin, neutrophil count, blood urea, serum creatinine, glomerular filtration rate, B2M, IL6, and ANG‑2 (P = 0.001, 0.033, 0.005, 0.001, 0.001, 0.001, 0.004, and 0.001, respectively). ANG‑2 showed signifi
... Show MoreBackground: Congenital heart disease is one of the most common developmental anomalies in children. These patients commonly have poor oral health that increase caries risk. Dental management of children with congenital heart disease requires special attention, because of their heightened susceptibility to infectious endocarditis. The aims of this study were to assess the severity of dental caries of primary and permanent teeth and treatment needs in relation to nutritional indicator (Body Mass Index) among children with congenital heart disease. Materials and Methods: In this case-control study, case group consisted of 399 patients aged between 6-12 years old with congenital heart disease were examined for dental status in Ibn Al-Bitar spec
... Show MoreThis paper describes the development of a simple spectrophotometric determination of bismuth III with 4-(2-pyridylazo) resorcinol (PAR) in aqueous solution in the presence of cetypyridinium chloride surfactant at pH 5 which exhibits maximum absorption at 532 nm. Beer's law is obeyed over the range 5-200 µg/25 mL. i.e. 0.2-8 ppm with a molar absorptivity of 3×104 l.mol-1.cm-1 and Sandell's sensitivity index of 0.0069 µg.cm-2. The method has been applied successfully in the determination of Bi (III) in waters and veterinary preparation.
Films of pure Poly (methyl methacrylate) (PMMA) doped by potassium iodide (KI) salt with percentages (1%) at different thickness prepared by casting method at room temperature. In order to study the effect of increasing thickness on optical properties, transmission and absorption spectra have been record for five different thicknesses(80,140,210,250,320)µm. The study has been extended to include the changes in the band gap energies, refractive index, extinction coefficient and absorption coefficient with thickness.
Commercial, industrial, and military activity, largely in the 19th and 20th centuries, have led to environmental pollution that can threaten human health and ecosystem function, liquid gas petroleum (LPG) products are the major sources of energy for industry and daily life that cause environmental contamination during various stages of production, transportation, refining and use. Screening of bacterial isolate by using clear zone techniques and biomass and optical density. Results revealed that isolate Burkholdaria cepatia showed a high ability for hydrocarbons biodegradation and this isolate identified depending on morphological cultural, gram stain, microscopic features, biochemical tests, and VITEK2 compact. In this study,
... Show More