Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
In the present research synthesis and study of biological activity a series of new polymers modified of chitosan with compounds containing azo group. Beginning diazonium salt produced from 3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diamine reacted with concentrated HCl acid and sodium nitrite. The coupling reaction between diazonium salt with substituted aromatic aldehyde to produce Azo derivatives )1-6(. Azo Schiff bases Chitosan )7-12( were synthesized by condensation of Chitosan with Azo derivatives )1-6( in ethanol with some drops of glacial acetic acid. The structural modifications of Chitosan ring (linked to a bioactive azo moiety) were expected to give new derivatives )7-12( with a diverse range of biological functions. These compounds' st
... Show MoreGurney flap (GF) is well-known as one of the most attractive plain flaps because of the simple configuration and effectiveness in improving the lift of the airfoil. Many studies were conducted, but the effects of GF on the various airfoil types need to be further investigated. This study aimed to clarify the effect of GF in the case of the supercritical airfoil RAE2822. This research includes a steady, two-dimensional computational investigation carried out on the supercritical airfoil type RAE-2822 to analyze Gurney flap (GF) effects on the aerodynamic characteristics of this type of airfoil utilizing the Spalart-Allmaras turbulence model within the commercial software Fluent. The airfoil with the Gurney flap was analyz
... Show MoreMalnutrition, anemia, and micronutrient deficits may be associated with Enterobius vermicularis infection. Hence, the subject has recently received a lot of attention. The goal of this study was to analyse the nutritional, hematological and micronutrient status of children infected with E. vermicularis. This research was carried out in Baghdad from October 2021 to the end of March 2022. The study comprised 100 children of both sexes, ranging in age from 3-16 years. All individuals nutritional status was assessed using the weight-for-age Z score and the height-for-age Z score. As well as cellophane tape samples and blood samples were collected from all individuals. The cellophane tape samples were examined under microscope f
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreIn this study, Zinc oxide nanostructures were synthesized via a hydrothermal method by using zinc nitrate hexahydrate and sodium hydroxide as a precursor. Three different annealing temperatures were used to study their effect on ZnO NSs properties. The synthesized nanostructure was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Atomic force microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). Their optical properties were studied by using UV -visible spectroscopy. The XRD analysis confirms that all ZnO nanostructures have the hexagonal wurtzite structure with average crystallite size within the range of (30.59 - 34
... Show MoreThe study aims to integrate the visually impaired people into the art connoisseur community through producing special print artworks to enable the visually impaired people to use their other senses to feel artworks by using artistic printing techniques through adding some prominent materials to the printing colors or making an impact that visually impaired people can perceive using their other senses. This study also aims to set up art exhibitions that display tangible works that can enable visually impaired people to feel artwork and understand its elements to enable them to feel it through other senses.
The study follows the experimental method, through using artistic printing techniques, which allow printing with prominent textur
Micro-perforated panel (MPP) absorber is increasingly gaining popularity as an alternative sound absorber in buildings compared to the well-known synthetic porous materials. A single MPP has a typical feature of a Helmholtz resonator with a high amplitude of absorption but a narrow absorption frequency bandwidth. To improve the bandwidth, a single MPP can be cascaded with another single MPP to form a double-layer MPP. This paper proposes the introduction of inhomogeneous perforation in the double-layer MPP system (DL-iMPP) to enhance the absorption bandwidth of a double-layer MPP. Mathematical models are proposed using the equivalent electrical circuit model and are validated with experiments with good agreement. It is revealed that the DL-
... Show More