Preferred Language
Articles
/
IBjvG5YBVTCNdQwC6oKb
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Correlation Expression between P52 and BCL2 among Iraqi Women with Breast Carcinoma
...Show More Authors

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Aip Conference Proceedings
Biofilm formation rate measurement in water and biomedical systems using photometric smartphones applications
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Preview PDF
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sat Jan 23 2021
Journal Name
Neural Computing And Applications
Multi-objectives TLBO hybrid method to select the related risk features with rheumatism disease
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

View Publication
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus (17)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Sun May 10 2020
Journal Name
Baghdad Science Journal
Lack of Association between LCS6 Variant in KRAS Gene with the Occurrence of Breast Tumors in Iraqi Women
...Show More Authors

Breast cancer is the most commonly diagnosed cancer and remains one of the main reasons of cancer-related mortality in women worldwide. KRAS variant rs61764370 (T>G) is associated with an increased risk of occurrence of many cancers, Here The case-control study was accomplished on 135 women including 45 women with breast cancer patients, 45 women with benign breast lesions and 45 healthy women to analyze the association of KRAS variant rs (61764370 T>G) with breast cancer. LCS 6 variant in KRAS gene was amplified by using specific primers, then genotype was detected after sequencing the PCR products. The results showed that the genotype and allele frequency of TT and GT allele of  KRAS

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 28 2021
Journal Name
Misan Journal For Physical Education Sciences
The Effectiveness of Using Generative Learning Model in Learning Kinetic Series on Rings and Horizontal Bar In Artistic Gymnastics for men
...Show More Authors

The aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di

... Show More
Preview PDF