Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
This study was designed to compare the effect of two types of viral hepatitis A and E (HAV
and HEV) on liver functions in Iraqi individuals by the measurement of biochemical changes
associated with hepatitis.
The study performed on 58 HEV and 66 HAV infected patients compared with 28 healthy
subjects. The measured biochemical tests include total serum bilirubin, serum transminases (ALT
and AST) alkaline phosphatase (ALP) and gamma glutamyl transferase (GGT).
The study showed that adolescent and young adults (17-29) years, were mostly affected by
HEV while children (5-12) years were frequently affected by HAV. The severity of liver damage in
HEV patients was higher than HAV patients as a result of high serum transa
This study aimed to determine the possibility of culturing genus Artemia in under laboratory conditions for locally culturing and producing. Different salinity concentrations were used, ranging from 5-40g/l . the results showed that the concentration 30g/l is the best for hatching. This concentration recorded hatching efficiency of 68800 nauplii/g cysts and hatching percentage of 45.86%, while the concentration 5g/l recorded less hatching efficiency and hatching percentage of 20266 nauplii/g and 13.5% respectively . Investigating the effect of salinity on individuals survival and growth using saline concentrations ranging from 30to 100g/l, revealed that the best percentage was 75.00% in the first week with 70g/l, whilst the best rates of
... Show MorePermeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreSewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreWith the escalation of cybercriminal activities, the demand for forensic investigations into these crimeshas grown significantly. However, the concept of systematic pre-preparation for potential forensicexaminations during the software design phase, known as forensic readiness, has only recently gainedattention. Against the backdrop of surging urban crime rates, this study aims to conduct a rigorous andprecise analysis and forecast of crime rates in Los Angeles, employing advanced Artificial Intelligence(AI) technologies. This research amalgamates diverse datasets encompassing crime history, varioussocio-economic indicators, and geographical locations to attain a comprehensive understanding of howcrimes manifest within the city. Lev
... Show MoreIn this study, nanocomposites have been prepared by adding
multiwall carbon nanotubes (MWCNTs) with weight ratios (0, 2, 3,
4, 5) wt% to epoxy resin. The samples were prepared by hand lay-up
method. Influence of an applied load before and after immersion in
sodium hydroxide (NaOH) of normality (0.3N) for (15 days) at
laboratory temperature on wear rate of Ep/MWCNTs
nanocomposites was studied. The results showed that wear rate
increases with increasing the applied load for the as prepared and
immersed samples and after immersion. It was also found that epoxy
resin reinforced with MWCNTs has wear rate less than neat epoxy.
The sample (Ep + 5wt% of MWCNTs) has lower wear rate. The
immersion effect in base so