Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
Drag reduction (DR) techniques are used to improve the flow by spare the flow energy. The applications of DR are conduits in oil pipelines, oil well operations and flood water disposal, many techniques for drag reduction are used. One of these techniques is microbubbles. In this work, reduce of drag percent occurs by using a small bubbles of air pumped in the fluid transported. Gasoil is used as liquid transporting in the pipelines and air pumped as microbubbles. This study shows that the maximum value of drag reduction is 25.11%.
In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreWith the spread of global markets for modern technical education and the diversity of programs for the requirements of the local and global market for information and communication technology, the universities began to race among themselves to earn their academic reputation. In addition, they want to enhance their technological development by developing IMT systems with integrated technology as the security and fastest response with the speed of providing the required service and sure information and linking it The network and using social networking programs with wireless networks which in turn is a driver of the emerging economies of technical education. All of these facilities opened the way to expand the number of students and s
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MorePvcABCD are cluster of genes found in Pseudomonas aeruginosa. The research was designed to examine the relationship between the pvc genes expression and cupB gene, which plays a crucial role in the development of biofilm, and rhlR, which regulates the expression of biofilm-related genes, and to investigate whether the pvc genes form one or two operons. The aims were achieved by employing qRT-PCR technique to measure the gene expression of genes of interest. It was found that out of 25 clinical isolates, 21 isolates were qualified as P.aeruginosa. Amongst, 18(85.7%) were evaluated as biofilm producers, 10 (47.6%), 5 (23.8%), and 3 (14.2%) were evaluated as strong, moderate and weak producers respectively, while, 3 (14.2%) were considered
... Show MoreStatic Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of the active power flow and the transient stability.
Recent accumulated evidences suggest that prolactin is an important immunomodulator and may have a role in the pathogenesis of systemic lupus erythematosus (SLE). The aim of this study was to assess the frequency of hyperprolactinemia in women with SLE and to evaluate its correlation with disease flares. Serum prolactin levels were measured in 62 women with SLE and 50 age- and sex-matched healthy controls. In patients and control groups prolactin levels were determined by immunoradiometric assay (IRMA). The prolactin level was found to be higher than normal rang in (40.3%) of SLE patients in active stage versus only (8.06%) of the same SLE patients but in the inactive stage and in (4%) of control group, the elevation was ranging between mi
... Show MoreOxidative stress markers are of important diagnostic parameters for many disorders including cholelithiasis. This present study has aimed to assess the state of oxidative stress in symptomatic radiographically confirmed (Cholelithiasis) patients by measuring two parameters used as oxidative stress parameters which are serum myeloperoxidase (MPO) and superoxide dismutase (SOD). This study was carried out on 100 patient diagnosed as (Cholelithiasis) patients with 30 age and sex matched healthy controls by measuring serum (MPO) and (SOD) by ELIZA technique .Results showed significantly decrease in antioxidant enzyme(SOD) and increase in serum level of (MPO) comparing with controls.
Keywords: Cholelithiasis , Oxidative stress
... Show More