Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThis cross-sectional, questionnaire-based study evaluated the knowledge, attitude and practice towards breast cancer and breast self-examination [BSE] among 387 [302 females and 85 males] educated Iraqis affiliated to 2 Iraqi universities. The participants were categorized into 3 occupations: student [71.3%], teaching staff [10.3%] and administrative staff [18.3%]. About half of the participants had a low knowledge score [< 50%]; only 14.3% were graded as [Good] and above. Almost 75% of the participants believed that the best way to control breast cancer was through early detection and other possible preventive measures. Most participants [90.9%] had heard of BSE, the main source of informatio
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreTo accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens
... Show MoreA new synthesis of Schiff (K) 6 and Mannich bases (Q) 7 had formed compound (Q) 7 by reacting compound (K) with N-methylaniline at the presence of formalin 35% to given Mannich base (Q). Additionally, new complexes were formed by reacting Schiff base (K) with metal salts CuCl2·2H2O, PdCl2·2H2O, and PtCl6·6H2O by 2:1 of M:L ratio. New ligands and their complexes were characterized, exanimated, and confirmed through several techniques, including FTIR, UV-visible, 1H-NMR, 13C-NMR spectroscopy, CHN analysis, FAA, TG, molar conductivity, and magnetic susceptibility. These compounds and their complexes were screened against breast cancer cells. It was determined that several of these compounds had a significant anti-breast cancer effec
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show More