Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
With the increasing prevalence of breast cancer among female internationally, occupies about 25% of all cases of cancer, with a measured 1.57 million up to date cases in 2012. Breast cancer has turn a most warning to health of female in Iraq, where it is the major cause of death among women after cardiovascular diseases, with a mortality rate of 23% related cancer. Recently there is a crucial requirement to include community pharmacists in health elevation activities to support awareness and early diagnosis of cancer, specially breast cancer. The aim of this study is to assess knowledge, attitude and perceived barriers amongst Iraqi community pharmacists towards health promotion of breast cancer. This study is cross sectional research. A
... Show MoreBackground: Acute radiodermatitis is a common side effect during and after radiotherapy course in breast cancer patients treated by radiotherapy. This study assess the frequency of acute radiodermatitis and record the predictive factors for acute radiodermatitis. Patients and Methods: A descriptive case series study conducted at Baghdad, Iraq from August 2020 to September 2021. 70 female scheduled for radiotherapy sessions enrolled in this study. sociodemographic data were recorded and Skin examination before radiotherapy and weekly till the end of the radiotherapy sessions was done to report the frequency, risk factors, clinical picture and grades of acute radiodermatitis based on The National Cancer Institute’s Common Terminology Crite
... Show MoreLetrozole (LZL) is a non-steroidal competitive aromatase enzyme system inhibitor. The aim of this study is to improve the permeation of LZL through the skin by preparing as nanoemulsion using various numbers of oils, surfactants and co-surfactant with deionized water. Based on solubility studies, mixtures of oleic acid oil and tween 80/ transcutol p as surfactant/co-surfactant (Smix) in different percentages were used to prepare nanoemulsions (NS). Therefore, 9 formulae of (o/w) LZL NS were formulated, then pseudo-ternary phase diagram was used as a useful tool to evaluate the NS domain at Smix ratios: 1:1, 2:1 and 3:1.
Many previous investigations have found quercetin to be a powerful antioxidant and antitumor flavonoid, but its poor bioavailability has limited its use. This current study investigated the effects of two newly synthesized Quercetin Schiff bases containing 2-amino thiadiazole-5-thiol (Q1), and its benzyl derivatives (Q2) on MCF-7 human breast cancer cells. Cell viability and apoptosis were assessed to determine the toxic effects of Q1 and Q2. Cytotoxicity valuation showed that both compounds inhibited MCF-7 cell growth, and lactate dehydrogenase (LDH) activity increased in a dose-dependent aspect compared to the control group. Comet assay results observed that Q1 and Q2 induce more serious DNA damage than the control (untreated cell
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
This study employs evolutionary optimization and Artificial Intelligence algorithms to determine an individual’s age using a single-faced image as the basis for the identification process. Additionally, we used the WIKI dataset, widely considered the most comprehensive collection of facial images to date, including descriptions of age and gender attributes. However, estimating age from facial images is a recent topic of study, even though much research has been undertaken on establishing chronological age from facial photographs. Retrained artificial neural networks are used for classification after applying reprocessing and optimization techniques to achieve this goal. It is possible that the difficulty of determining age could be reduce
... Show MoreBackground: Breast Cancer is the most common malignancy among the Iraqi population; the majority of cases are still diagnosed at advanced stages with poor prospects of cure. Early detection through promoting public awareness is one of the promising tools in its control. Objectives: To evaluate the baseline needs for breast cancer awareness in Iraq through exploring level of knowledge, beliefs and behavior towards the disease and highlighting barriers to screening among a sample of Iraqi women complaining of breast cancer. Methodology: Two-hundred samples were enrolled in this study; gathered from the National